

GigaDevice Semiconductor Inc.

适用于 Arm Cortex-M 处理器的 GD32

Embedded Builder 分散加载说明

应用笔记

AN311

1.0 版本

（2025 年 12 月）

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

1

目录

目录 .. 1

图索引 .. 2

表索引 .. 3

1. 简介 .. 4

2. 分散加载在 Embedded Builder 中的实现 .. 5

2.1. 使用手动编写的 ld 文件 ... 5

2.2. VMA 和 LMA ... 5

2.3. 将全局变量和全局数组加载到指定位置 .. 5

2.3.1. 自定义段 ... 5

2.3.2. C 代码中的变量定义 ... 7

2.3.3. 自定义初始化实现 ... 8

2.3.4. 测试验证 ... 9

2.4. 将函数加载到指定位置 ... 13

2.4.1. 自定义段 ... 13

2.4.2. C 代码中的函数定义 ... 15

2.4.3. 自定义初始化实现 ... 17

2.4.4. 测试验证 ... 18

2.5. 将.c 文件代码段加载到指定位置 .. 23

2.5.1. 自定义段 ... 23

2.5.2. C 代码中的文件定义 ... 24

2.5.3. 自定义初始化实现 ... 27

2.5.4. 测试验证 ... 28

2.6. SDRAM 分散加载实现 ... 35

3. 版本历史 ... 37

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

2

图索引

图 2-1 GD32 Embedded Builder 中工程目录结构 .. 5

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

3

表索引

表 2-1. 将全局变量和全局数组加载到指定位置地址分配总览 ... 6

表 2-2. gd32h7xx_flash.ld 中将全局变量和全局数组加载到指定位置 .. 6

表 2-3. 全局变量和全局数组加载到指定位置头文件宏定义 ... 7

表 2-4. 全局变量和全局数组加载到指定位置变量定义 .. 7

表 2-5. 全局变量和全局数组加载到指定位置数据段初始化实现 ... 8

表 2-6. 全局变量和全局数组加载到指定位置内存验证代码 ... 9

表 2-7. 将全局变量和全局数组加载到指定位置日志 .. 12

表 2-8. 将函数加载到指定位置地址分配总览... 13

表 2-9. gd32h7xx_flash.ld 中将全局变量和全局数组加载到指定位置 .. 13

表 2-10. 将函数加载到指定位置头文件宏定义 .. 15

表 2-11. 将函数加载到指定位置函数定义与实现 ... 15

表 2-12. 函数加载到指定位置初始化实现 .. 17

表 2-13. 函数加载到指定位置内存验证代码 .. 18

表 2-14. 将函数加载到指定位置日志 ... 20

表 2-15. 将.c 加载到指定位置地址分配总览 .. 23

表 2-16. gd32h7xx_flash.ld 中将全局变量和全局数组加载到指定位置 .. 23

表 2-17. .c 文件定义 ... 24

表 2-18. .c 文件加载到指定位置初始化实现 ... 27

表 2-19. .c 文件加载到指定位置内存验证代码 ... 28

表 2-20. 将.c 文件加载到指定位置日志 ... 32

表 2-21. SDRAM 初始化代码 ... 35

表 3-1. 版本历史 .. 37

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

4

1. 简介

ld 是 GNU binutils 工具集中的一个，是众多 Linkers（链接器）的一种。ld 把各种目标文件和

库文件链接起来，并重定向它们的数据，完成符号解析。Linking 其实主要就是完成四个方面的

工作：storage allocation、symbol management、libraries、relocation。因此根据工程代码的

需要，我们可以通过修改该文件来实现指定代码段区的位置存储。

本应用笔记基于 GD32H75x 系列，采用 GD32H759I-EVAL 开发板，Embedded Builder 版本

为 1.5.18，实现的功能主要如下：

◼ 实现用户定义的全局变量和数组加载到指定位置

◼ 实现用户定义的函数加载到指定位置

◼ 实现用户指定.c 文件加载到指定位置

◼ 实现上述功能加载到 SDRAM 指定位置

本手册同样适用于 GD32 Arm Cortex® M3/M4/M23/M33/M7 内核 MCU 产品。

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

5

2. 分散加载在 Embedded Builder 中的实现

2.1. 使用手动编写的 ld 文件

本工程直接使用手动编写的 ld 文件，在 Embedded Builder 中的“Window-> Show View->

Project Explore->ldscripts”中双击 gd32h7xx_flash.ld 文件，工程目录结构如图 2-1 GD32

Embedded Builder中工程目录结构所示。同时也可到工程目录“..\ldscripts\gd32h7xx_flash.ld”

下打开编辑。

图 2-1 GD32 Embedded Builder 中工程目录结构

2.2. VMA 和 LMA

在链接脚本中，VMA 和 LMA 是两个核心概念，用于控制程序段在内存中的分布。VMA (Virtual

Memory Address) 即虚拟内存地址，是程序运行时段所在的内存地址，也称为运行时地址。

LMA (Load Memory Address) 即加载内存地址，是程序烧录时段存储的物理地址，也称为存

储地址。实现分散加载功能，需要理解 VMA 和 LMA 两个核心概念，关于 VMA 和 LMA 的具

体介绍可参考《AN200 GD32 Embedded builder 链接脚本文件说明》。

2.3. 将全局变量和全局数组加载到指定位置

2.3.1. 自定义段

在链接脚本中添加用户自定义段，将不同类型的数据分配到指定地址，地址分配如表 2-1. 将

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

6

全局变量和全局数组加载到指定位置地址分配总览所示，链接文件代码如表 2-2.

gd32h7xx_flash.ld 中将全局变量和全局数组加载到指定位置所示。

表 2-1. 将全局变量和全局数组加载到指定位置地址分配总览

段类型 section 名称 FLASH 地址 RAM 地址 用途

初始化变量 .data.user_vars 0x08008000 0x24008000 有初始值的变量

初始化数组 .data.user_arrays 0x08009000 0x24009000 有初始值的数组

未初始化变量 .bss.user_vars - 0x2400A000 零初始化变量

未初始化数组 .bss.user_arrays - 0x2400B000 零初始化数组

常量数组
.rodata.user_const_ar

rays
0x08007000 - const 数组

表 2-2. gd32h7xx_flash.ld 中将全局变量和全局数组加载到指定位置

/* user initializes variable section */

.user_global_vars ALIGN(0x24008000, 4) : AT(ALIGN(0x08008000, 4))

{

 . = ALIGN(4);

 __user_global_vars_start__ = .;

 KEEP(*(.data.user_vars))

 . = ALIGN(4);

 __user_global_vars_end__ = .;

 __user_global_vars_size__ = __user_global_vars_end__ - __user_global_vars_start__;

}

__user_global_vars_loadaddr__ = LOADADDR(.user_global_vars);

/* user initializes array section */

.user_global_arrays ALIGN(0x24009000, 4) : AT(ALIGN(0x08009000, 4))

{

 . = ALIGN(4);

 __user_global_arrays_start__ = .;

 KEEP(*(.data.user_arrays))

 . = ALIGN(4);

 __user_global_arrays_end__ = .;

 __user_global_arrays_size__ = __user_global_arrays_end__ - __user_global_arrays_start__;

}

__user_global_arrays_loadaddr__ = LOADADDR(.user_global_arrays);

/* user uninitialized variable section */

.user_uninit_vars ALIGN(0x2400A000, 4) (NOLOAD) :

{

 . = ALIGN(4);

 __user_uninit_vars_start__ = .;

 KEEP(*(.bss.user_vars))

 . = ALIGN(4);

 __user_uninit_vars_end__ = .;

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

7

 __user_uninit_vars_size__ = __user_uninit_vars_end__ - __user_uninit_vars_start__;

}

/* user uninitialized array section */

.user_uninit_arrays ALIGN(0x2400B000, 4) (NOLOAD) :

{

 . = ALIGN(4);

 __user_uninit_arrays_start__ = .;

 KEEP(*(.bss.user_arrays))

 . = ALIGN(4);

 __user_uninit_arrays_end__ = .;

 __user_uninit_arrays_size__ = __user_uninit_arrays_end__ - __user_uninit_arrays_start__;

}

/* user constant array section */

.user_const_arrays ALIGN(0x08007000, 4) :

{

 . = ALIGN(4);

 __user_const_arrays_start__ = .;

 KEEP(*(.rodata.user_const_arrays))

 . = ALIGN(4);

 __user_const_arrays_end__ = .;

 __user_const_arrays_size__ = __user_const_arrays_end__ - __user_const_arrays_start__;

} > FLASH

2.3.2. C 代码中的变量定义

在头文件中定义 section 属性宏，提高代码可读性，如表 2-3. 全局变量和全局数组加载到指定

位置头文件宏定义所示：

表 2-3. 全局变量和全局数组加载到指定位置头文件宏定义

/* initialized data section attributes - will be loaded from FLASH to RAM */

#define USER_INIT_VAR __attribute__((section(".data.user_vars")))

#define USER_INIT_ARRAY __attribute__((section(".data.user_arrays")))

/* uninitialized data section attributes - only in RAM, cleared at startup */

#define USER_UNINIT_VAR __attribute__((section(".bss.user_vars")))

#define USER_UNINIT_ARRAY __attribute__((section(".bss.user_arrays")))

#define USER_CONST_ARRAY __attribute__((section(".rodata.user_const_arrays")))

变量定义示例如表 2-4. 全局变量和全局数组加载到指定位置变量定义所示。

表 2-4. 全局变量和全局数组加载到指定位置变量定义

/* user initialized global variables definition - will be placed in .data.user_vars section */

USER_INIT_VAR int32_t system_status = 1;

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

8

USER_INIT_VAR uint32_t device_serial = 0x12345678;

USER_INIT_VAR uint16_t firmware_version = 0x0102;

USER_INIT_VAR uint8_t system_config = 0xAB;

/* user initialized global arrays definition - will be placed in .data.user_arrays section */

USER_INIT_ARRAY uint16_t calibration_data[10] = {

 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

};

USER_INIT_ARRAY uint8_t device_info[32] = {

 'G','D','3','2','H','7','x','x',' ','D','e','v','i','c','e',0

};

/* User uninitialized global variables definition - will be placed in .bss.user_vars section */

USER_UNINIT_VAR volatile uint32_t tick_counter;

USER_UNINIT_VAR volatile uint16_t error_code;

USER_UNINIT_VAR volatile uint8_t system_state;

USER_UNINIT_VAR uint32_t runtime_config;

/* User uninitialized global arrays definition - will be placed in .bss.user_arrays section */

USER_UNINIT_ARRAY uint8_t uart_tx_buffer[512];

USER_UNINIT_ARRAY uint8_t uart_rx_buffer[512];

USER_UNINIT_ARRAY uint16_t adc_samples[256];

USER_UNINIT_ARRAY char log_buffer[1024];

/* Const array definition */

USER_CONST_ARRAY const uint16_t lookup_table[256] = {

 0x0000, 0x0001, 0x0004, 0x0009,

};

2.3.3. 自定义初始化实现

在系统启动时调用自定义段初始化函数，如表 2-5. 全局变量和全局数组加载到指定位置数据

段初始化实现所示。

表 2-5. 全局变量和全局数组加载到指定位置数据段初始化实现

/* Data initialization function implementation */

void UserData_Init(void)

{

 uint32_t *src, *dst;

 uint32_t size;

 /* 1. Initialize user global variables segment - copy from FLASH to RAM */

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

9

 src = &__user_global_vars_loadaddr__;

 dst = &__user_global_vars_start__;

 size = ((uint32_t)&__user_global_vars_end__ - (uint32_t)&__user_global_vars_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* 2. Initialize user global arrays segment - copy from FLASH to RAM */

 src = &__user_global_arrays_loadaddr__;

 dst = &__user_global_arrays_start__;

 size = ((uint32_t)&__user_global_arrays_end__ - (uint32_t)&__user_global_arrays_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* 3. Clear user uninitialized variables segment */

 dst = &__user_uninit_vars_start__;

 size = ((uint32_t)&__user_uninit_vars_end__ - (uint32_t)&__user_uninit_vars_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = 0;

 }

 /* 4. Clear user uninitialized arrays segment */

 dst = &__user_uninit_arrays_start__;

 size = ((uint32_t)&__user_uninit_arrays_end__ - (uint32_t)&__user_uninit_arrays_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = 0;

 }

}

注意：

1. 初始化放在 cache 初始化函数之前。

2. 常量数组不需要初始化操作。

2.3.4. 测试验证

通过串口打印的方式，测试全局变量和全局数组加载到指定位置内存布局验证，代码如表 2-6.

全局变量和全局数组加载到指定位置内存验证代码所示。

表 2-6. 全局变量和全局数组加载到指定位置内存验证代码

void UserData_PrintMemoryInfo(void)

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

10

{

 printf("=== User-defined Memory Segments Information ===\r\n");

 printf("1. Initialized variables segment:\r\n");

 printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_global_vars_start__,

 (uint32_t)&__user_global_vars_end__,

 (uint32_t)&__user_global_vars_end__ - (uint32_t)&__user_global_vars_start__);

 printf(" FLASH source: 0x%08X\r\n", (uint32_t)&__user_global_vars_loadaddr__);

 printf("2. Initialized arrays segment:\r\n");

 printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_global_arrays_start__,

 (uint32_t)&__user_global_arrays_end__,

 (uint32_t)&__user_global_arrays_end__ - (uint32_t)&__user_global_arrays_start__);

 printf(" FLASH source: 0x%08X\r\n", (uint32_t)&__user_global_arrays_loadaddr__);

 printf("3. Uninitialized variables segment:\r\n");

 printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_uninit_vars_start__,

 (uint32_t)&__user_uninit_vars_end__,

 (uint32_t)&__user_uninit_vars_end__ - (uint32_t)&__user_uninit_vars_start__);

 printf("4. Uninitialized arrays segment:\r\n");

 printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_uninit_arrays_start__,

 (uint32_t)&__user_uninit_arrays_end__,

 (uint32_t)&__user_uninit_arrays_end__ - (uint32_t)&__user_uninit_arrays_start__);

printf("5. Constant arrays segment:\r\n");

printf(" FLASH address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_const_arrays_start__,

 (uint32_t)&__user_const_arrays_end__,

 (uint32_t)&__user_const_arrays_end__ - (uint32_t)&__user_const_arrays_start__);

printf("==\r\n\r\n");

}

int main(void)

{

 gd_eval_com_init(EVAL_COM);

 /*system initialization */

 printf("GD32H7xx User-defined Data Segment Example\r\n");

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

11

 printf("==\r\n");

 /* initialize user data segment */

 UserData_Init();

 /* enable the CPU cache */

 cache_enable();

 mpu_config();

 /* print memory information */

 UserData_PrintMemoryInfo();

 /* verify initialization data */

 printf("=== Verify Initialization Data ===\r\n");

 printf("system_status = %d (addr: 0x%08X)\r\n", system_status, (uint32_t)&system_status);

 printf("device_serial = 0x%08X (addr: 0x%08X)\r\n", device_serial, (uint32_t)&device_serial);

 printf("calibration_data[0] = %d (addr: 0x%08X)\r\n", calibration_data[0],

(uint32_t)&calibration_data[0]);

 printf("calibration_data[9] = %d (addr: 0x%08X)\r\n", calibration_data[9],

(uint32_t)&calibration_data[9]);

 printf("calibration_data array base addr: 0x%08X\r\n", (uint32_t)calibration_data);

 printf("device_info = %s (addr: 0x%08X)\r\n", (char*)device_info, (uint32_t)device_info);

 /* verify const array */

 printf("lookup_table[0] = 0x%04X (addr: 0x%08X)\r\n", lookup_table[0],

(uint32_t)&lookup_table[0]);

 printf("lookup_table[255] = 0x%04X (addr: 0x%08X)\r\n", lookup_table[255],

(uint32_t)&lookup_table[255]);

printf("lookup_table array base addr: 0x%08X\r\n", (uint32_t)lookup_table);

 /* test uninitialized data usage */

 printf("\r\n=== Test Uninitialized Data Usage ===\r\n");

 /* buffer filling test */

 for(int i = 0; i < 10; i++) {

 uart_tx_buffer[i] = i + 0x30; // '0' to '9'

 adc_samples[i] = i * 100;

 }

 uart_tx_buffer[10] = '\0';

 printf("uart_tx_buffer = %s (addr: 0x%08X)\r\n", (char*)uart_tx_buffer, (uint32_t)uart_tx_buffer);

 printf("adc_samples[5] = %d (addr: 0x%08X)\r\n", adc_samples[5], (uint32_t)&adc_samples[5]);

 printf("adc_samples array base addr: 0x%08X\r\n", (uint32_t)adc_samples);

 printf("\r\n=== System Ready ===\r\n");

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

12

 printf("User-defined data segments test completed successfully!\r\n");

 /* main loop - simple endless loop */

 while(1) {

 }

}

测试打印日志如表 2-7. 将全局变量和全局数组加载到指定位置日志所示，测试结果与实际分

配保持一致。

表 2-7. 将全局变量和全局数组加载到指定位置日志

GD32H7xx User-defined Data Segment Example

==

Starting initialization of user-defined data segments...

Initializing user global variables segment...

 Address range: 0x24008000 - 0x2400800C

 Data size: 12 bytes

Initializing user global arrays segment...

 Address range: 0x24009000 - 0x24009034

 Data size: 52 bytes

Clearing user uninitialized variables segment...

 Address range: 0x2400A000 - 0x2400A00C

 Data size: 12 bytes

Clearing user uninitialized arrays segment...

 Address range: 0x2400B000 - 0x2400BA00

 Data size: 2560 bytes

User data segments initialization completed!

=== User-defined Memory Segments Information ===

1. Initialized variables segment:

 RAM address: 0x24008000 - 0x2400800C (12 bytes)

 FLASH source: 0x08008000

2. Initialized arrays segment:

 RAM address: 0x24009000 - 0x24009034 (52 bytes)

 FLASH source: 0x08009000

3. Uninitialized variables segment:

 RAM address: 0x2400A000 - 0x2400A00C (12 bytes)

4. Uninitialized arrays segment:

 RAM address: 0x2400B000 - 0x2400BA00 (2560 bytes)

5. Constant arrays segment:

 FLASH address: 0x0800A000 - 0x0800A200 (512 bytes)

==

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

13

=== Verify Initialization Data ===

system_status = 1 (addr: 0x24008000)

device_serial = 0x12345678 (addr: 0x24008004)

calibration_data[0] = 100 (addr: 0x24009000)

calibration_data[9] = 1000 (addr: 0x24009012)

calibration_data array base addr: 0x24009000

device_info = GD32H7xx Device (addr: 0x24009014)

lookup_table[0] = 0xA55A (addr: 0x0800A000)

lookup_table[255] = 0x0000 (addr: 0x0800A0FE)

lookup_table array base addr: 0x0800A000

=== Test Uninitialized Data Usage ===

uart_tx_buffer = 0123456789 (addr: 0x2400B000)

adc_samples[5] = 500 (addr: 0x2400B40A)

adc_samples array base addr: 0x2400B400

=== System Ready ===

User-defined data segments test completed successfully!

2.4. 将函数加载到指定位置

2.4.1. 自定义段

在链接脚本中添加用户自定义段，将函数分配到指定地址，地址分配如表 2-8. 将函数加载到

指定位置地址分配总览所示，链接文件代码如表 2-9. gd32h7xx_flash.ld 中将全局变量和全

局数组加载到指定位置所示。

表 2-8. 将函数加载到指定位置地址分配总览

段类型 section 名称 FLASH 地址 RAM 地址 用途

FLASH 函数 .text.flash_functions 0x08010000 - 直接在 FLASH 中执行

RAM 函数 .text.ram_functions 自动分配 0x2400C000 复制到 RAM 中执行

ITCM 函数 .text.itcm_functions 自动分配 0x00001000 复制到 ITCMRAM 中执行

DTCM 函数 .text.dtcm_functions 自动分配 0x20001000 复制到 DTCMRAM 中执行

表 2-9. gd32h7xx_flash.ld 中将全局变量和全局数组加载到指定位置

/* User custom function scatter loading */

.user_flash_functions 0x08010000 :

{

 . = ALIGN(4);

 __user_flash_functions_start__ = .;

 KEEP(*(.text.flash_functions))

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

14

 . = ALIGN(4);

 __user_flash_functions_end__ = .;

 __user_flash_functions_size__ = __user_flash_functions_end__ -

__user_flash_functions_start__;

} > FLASH

.user_ram_functions 0x2400C000 :

{

 . = ALIGN(4);

 __user_ram_functions_start__ = .;

 KEEP(*(.text.ram_functions))

 . = ALIGN(4);

 __user_ram_functions_end__ = .;

 __user_ram_functions_size__ = __user_ram_functions_end__ -

__user_ram_functions_start__;

} > AXISRAM AT> FLASH

__user_ram_functions_loadaddr__ = LOADADDR(.user_ram_functions);

.user_itcm_functions 0x00001000 :

{

 . = ALIGN(4);

 __user_itcm_functions_start__ = .;

 KEEP(*(.text.itcm_functions))

 . = ALIGN(4);

 __user_itcm_functions_end__ = .;

 __user_itcm_functions_size__ = __user_itcm_functions_end__ -

__user_itcm_functions_start__;

} > ITCMRAM AT> FLASH

__user_itcm_functions_loadaddr__ = LOADADDR(.user_itcm_functions);

.user_dtcm_functions 0x20001000 :

{

 . = ALIGN(4);

 __user_dtcm_functions_start__ = .;

 KEEP(*(.text.dtcm_functions))

 . = ALIGN(4);

 __user_dtcm_functions_end__ = .;

 __user_dtcm_functions_size__ = __user_dtcm_functions_end__ -

__user_dtcm_functions_start__;

} > DTCMRAM AT> FLASH

__user_dtcm_functions_loadaddr__ = LOADADDR(.user_dtcm_functions);

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

15

2.4.2. C 代码中的函数定义

在头文件中定义 section 属性宏，提高代码可读性，如表 2-10. 将函数加载到指定位置头文件

宏定义所示：

表 2-10. 将函数加载到指定位置头文件宏定义

/* Function section attributes */

#define FLASH_FUNCTION __attribute__((section(".text.flash_functions")))

#define RAM_FUNCTION __attribute__((section(".text.ram_functions")))

#define ITCM_FUNCTION __attribute__((section(".text.itcm_functions")))

#define DTCM_FUNCTION __attribute__((section(".text.dtcm_functions")))

变量定义示例如表 2-11. 将函数加载到指定位置函数定义与实现所示。

表 2-11. 将函数加载到指定位置函数定义与实现

FLASH_FUNCTION int FlashFunction_Calculate(int a, int b)

{

 printf("FlashFunction_Calculate: a=%d, b=%d\r\n", a, b);

 int result = 0;

 for(int i = 0; i < 50; i++) {

 result += (a * b) + (i % 10);

 }

 printf("FlashFunction_Calculate result: %d\r\n", result);

 return result;

}

FLASH_FUNCTION void FlashFunction_ProcessData(uint8_t* data, uint32_t len)

{

 printf("FlashFunction_ProcessData: processing %d bytes\r\n", len);

 for(uint32_t i = 0; i < len; i++) {

 data[i] = data[i] ^ 0x5A;

 }

 printf("Data processing completed\r\n");

}

RAM_FUNCTION int RamFunction_FastProcess(int data)

{

 //printf("RamFunction_FastProcess: input=0x%08X\r\n", data);

 volatile int temp = data;

 temp = (temp << 1) ^ 0xA5A5;

 temp = (temp >> 1) | 0x5A5A0000;

 //printf("RamFunction_FastProcess result: 0x%08X\r\n", temp);

 return temp;

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

16

}

RAM_FUNCTION void RamFunction_ProcessBuffer(uint16_t* buffer, uint32_t size)

{

 printf("RamFunction_ProcessBuffer: processing %d elements\r\n", size);

 for(uint32_t i = 0; i < size; i++) {

 buffer[i] = (buffer[i] << 1) | (buffer[i] >> 15);

 }

 printf("Buffer processing completed\r\n");

}

ITCM_FUNCTION int ItcmFunction_CriticalTask(int input)

{

 printf("ItcmFunction_CriticalTask: input=%d\r\n", input);

 register int result = input;

 result = (result * 3) + 7;

 result = result ^ 0x12345678;

 result = (result << 4) | (result >> 28);

 printf("ItcmFunction_CriticalTask result: %d\r\n", result);

 return result;

}

ITCM_FUNCTION uint32_t ItcmFunction_BitOperation(uint32_t value)

{

 printf("ItcmFunction_BitOperation: input=0x%08X\r\n", value);

 uint32_t result = value;

 result = ~result;

 result = (result & 0xAAAAAAAA) | ((result & 0x55555555) << 1);

 result = (result & 0xCCCCCCCC) | ((result & 0x33333333) << 2);

 printf("ItcmFunction_BitOperation result: 0x%08X\r\n", result);

 return result;

}

DTCM_FUNCTION int DtcmFunction_DataProcess(int value)

{

 printf("DtcmFunction_DataProcess: input=%d\r\n", value);

 static int buffer[32];

 for(int i = 0; i < 32; i++) {

 buffer[i] = value + (i * 10);

 }

 int sum = 0;

 for(int i = 0; i < 32; i++) {

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

17

 sum += buffer[i];

 }

 printf("DtcmFunction_DataProcess result: %d\r\n", sum);

 return sum;

}

DTCM_FUNCTION void DtcmFunction_ArrayOperation(uint32_t* array, uint32_t count)

{

 printf("DtcmFunction_ArrayOperation: processing %d elements\r\n", count);

 for(uint32_t i = 0; i < count; i++) {

 array[i] = array[i] * 2 + 1;

 }

 printf("Array operation completed\r\n");

}

2.4.3. 自定义初始化实现

在系统启动时调用自定义代码段初始化函数，如表 2-12. 函数加载到指定位置初始化实现所示。

表 2-12. 函数加载到指定位置初始化实现

void UserFunctions_Init(void)

{

 uint32_t *src, *dst;

 uint32_t size;

/* Copy RAM functions */

 src = &__user_ram_functions_loadaddr__;

 dst = &__user_ram_functions_start__;

 size = ((uint32_t)&__user_ram_functions_end__ - (uint32_t)&__user_ram_functions_start__) /

4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* Copy ITCM functions */

 src = &__user_itcm_functions_loadaddr__;

 dst = &__user_itcm_functions_start__;

 size = ((uint32_t)&__user_itcm_functions_end__ - (uint32_t)&__user_itcm_functions_start__) /

4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

18

 }

 /* Copy DTCM functions */

 printf("Copying DTCM functions...\r\n");

 src = &__user_dtcm_functions_loadaddr__;

 dst = &__user_dtcm_functions_start__;

 size = ((uint32_t)&__user_dtcm_functions_end__ - (uint32_t)&__user_dtcm_functions_start__)

/ 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

}

注意：初始化放在 cache 初始化函数之前。

2.4.4. 测试验证

通过串口打印的方式，测试将函数加载到指定位置内存布局验证，代码如表 2-13. 函数加载到

指定位置内存验证代码所示。

表 2-13. 函数加载到指定位置内存验证代码

void TestUserFunctions(void)

{

 printf("=== Testing User Functions ===\r\n");

 uint8_t test_data[16] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10};

 uint16_t test_buffer[8] = {100, 200, 300, 400, 500, 600, 700, 800};

 uint32_t test_array[5] = {10, 20, 30, 40, 50};

 printf("\n--- Testing FLASH Functions ---\r\n");

 FlashFunction_Calculate(15, 25);

 FlashFunction_ProcessData(test_data, 8);

 printf("\n--- Testing RAM Functions ---\r\n");

 RamFunction_FastProcess(0x12345678);

 RamFunction_ProcessBuffer(test_buffer, 8);

 printf("\n--- Testing ITCM Functions ---\r\n");

 ItcmFunction_CriticalTask(42);

 ItcmFunction_BitOperation(0xAAAA5555);

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

19

 printf("\n--- Testing DTCM Functions ---\r\n");

 DtcmFunction_DataProcess(100);

 DtcmFunction_ArrayOperation(test_array, 5);

 printf("\n===============================\r\n\r\n");

}

/*!

 \brief main function

 \param[in] none

 \param[out] none

 \retval none

*/

void main(void)

{

 gd_eval_com_init(EVAL_COM);

 printf("GD32H7xx User Functions Address Test\r\n");

 printf("===================================\r\n");

 /* initialize user functions */

 UserFunctions_Init();

 /* enable the CPU cache */

 cache_enable();

 mpu_config();

 /* print all function addresses */

 PrintFunctionAddresses();

 /* test all functions */

 TestUserFunctions();

 printf("All function tests completed!\r\n");

 printf("Function address verification complete.\r\n\r\n");

 /* main application loop with periodic address display */

 uint32_t counter = 0;

 while(1) {

 counter++;

 if(counter % 5 == 1) {

 /* periodically show function addresses */

 printf("=== Periodic Address Check %d ===\r\n", counter);

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

20

 printf("FlashFunction_Calculate: 0x%08X\r\n", (uint32_t)FlashFunction_Calculate);

 printf("RamFunction_FastProcess: 0x%08X\r\n",

(uint32_t)RamFunction_FastProcess);

 printf("ItcmFunction_CriticalTask: 0x%08X\r\n", (uint32_t)ItcmFunction_CriticalTask);

 printf("DtcmFunction_DataProcess: 0x%08X\r\n",

(uint32_t)DtcmFunction_DataProcess);

 printf("==============================\r\n\r\n");

 }

 /* call functions to verify they work at reported addresses */

 FlashFunction_Calculate(counter, counter + 10);

 RamFunction_FastProcess(counter * 0x1000);

 ItcmFunction_CriticalTask(counter + 100);

 DtcmFunction_DataProcess(counter * 50);

 /* delay between iterations */

 for(volatile int i = 0; i < 2000000; i++);

 /* stop after several iterations */

 if(counter >= 3) {

 printf("Address verification demo completed.\r\n");

 break;

 }

 }

 while(1) {

 }

}

测试打印日志如表 2-14. 将函数加载到指定位置日志所示，测试结果与实际分配保持一致。

表 2-14. 将函数加载到指定位置日志

GD32H7xx User Functions Address Test

===================================

Initializing user functions...

Copying RAM functions...

 RAM functions: 0x2400C000 - 0x2400C0B0 (176 bytes)

Copying ITCM functions...

 ITCM functions: 0x00001000 - 0x000010A0 (160 bytes)

Copying DTCM functions...

 DTCM functions: 0x20001000 - 0x200010E0 (224 bytes)

User functions initialization completed!

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

21

=== Function Entry Addresses ===

--- FLASH Functions (Direct Execution) ---

Section Range: 0x08010000 - 0x080100C4

FlashFunction_Calculate : 0x08010001

FlashFunction_ProcessData : 0x08010071

--- RAM Functions (Copied from FLASH) ---

FLASH Source: 0x080100C4

RAM Target : 0x2400C000 - 0x2400C0B0

RamFunction_FastProcess : 0x2400C001

RamFunction_ProcessBuffer : 0x2400C035

--- ITCM Functions ---

FLASH Source: 0x08010174

ITCM Target : 0x00001000 - 0x000010A0

ItcmFunction_CriticalTask : 0x00001001

ItcmFunction_BitOperation : 0x00001049

--- DTCM Functions ---

FLASH Source: 0x08010214

DTCM Target : 0x20001000 - 0x200010E0

DtcmFunction_DataProcess : 0x20001001

DtcmFunction_ArrayOperation : 0x2000107D

================================

=== Testing User Functions ===

--- Testing FLASH Functions ---

FlashFunction_Calculate: a=15, b=25

FlashFunction_Calculate result: 18975

FlashFunction_ProcessData: processing 8 bytes

Data processing completed

--- Testing RAM Functions ---

RamFunction_ProcessBuffer: processing 8 elements

Buffer processing completed

--- Testing ITCM Functions ---

ItcmFunction_CriticalTask: input=42

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

22

ItcmFunction_CriticalTask result: 591753169

ItcmFunction_BitOperation: input=0xAAAA5555

ItcmFunction_BitOperation result: 0x88888888

--- Testing DTCM Functions ---

DtcmFunction_DataProcess: input=100

DtcmFunction_DataProcess result: 8160

DtcmFunction_ArrayOperation: processing 5 elements

Array operation completed

===============================

All function tests completed!

Function address verification complete.

=== Periodic Address Check 1 ===

FlashFunction_Calculate: 0x08010001

RamFunction_FastProcess: 0x2400C001

ItcmFunction_CriticalTask: 0x00001001

DtcmFunction_DataProcess: 0x20001001

==============================

FlashFunction_Calculate: a=1, b=11

FlashFunction_Calculate result: 775

ItcmFunction_CriticalTask: input=101

ItcmFunction_CriticalTask result: 591754465

DtcmFunction_DataProcess: input=50

DtcmFunction_DataProcess result: 6560

FlashFunction_Calculate: a=2, b=12

FlashFunction_Calculate result: 1425

ItcmFunction_CriticalTask: input=102

ItcmFunction_CriticalTask result: 591754257

DtcmFunction_DataProcess: input=100

DtcmFunction_DataProcess result: 8160

FlashFunction_Calculate: a=3, b=13

FlashFunction_Calculate result: 2175

ItcmFunction_CriticalTask: input=103

ItcmFunction_CriticalTask result: 591754305

DtcmFunction_DataProcess: input=150

DtcmFunction_DataProcess result: 9760

Address verification demo completed.

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

23

2.5. 将.c 文件代码段加载到指定位置

2.5.1. 自定义段

在链接脚本中添加用户自定义段，将.c 文件代码段分配到指定地址，地址分配如表 2-15. 将.c

加载到指定位置地址分配总览所示，链接文件代码如表 2-16. gd32h7xx_flash.ld 中将全局变

量和全局数组加载到指定位置所示。

表 2-15. 将.c 加载到指定位置地址分配总览

模块文件 section 名称 FLASH 地址 RAM 地址 用途

flash_module.c .flash_module_functions 0x08020000 - 直接在 FLASH 中执行

ram_module.c .ram_module_functions 自动分配 0x2400D000 复制到 RAM 中执行

itcm_module.c .itcm_module_functions 自动分配 0x00002000 复制到 ITCMRAM 中执行

dtcm_module.c .dtcm_module_functions 自动分配 0x20002000 复制到 DTCMRAM 中执行

sram0_module.c .sram0_module_functions 自动分配 0x3000800 复制到 SRAM0 中执行

表 2-16. gd32h7xx_flash.ld 中将全局变量和全局数组加载到指定位置

/* user file-based function scatter loading */

.flash_module_functions ALIGN(0x08020000, 4) :

{

 . = ALIGN(4);

 __flash_module_functions_start__ = .;

 KEEP(*flash_module.o(.text))

 KEEP(*flash_module.o(.text*))

 . = ALIGN(4);

 __flash_module_functions_end__ = .;

} > FLASH

.ram_module_functions ALIGN(0x2400D000,4):

{

 . = ALIGN(4);

 __ram_module_functions_start__ = .;

 KEEP(*ram_module.o(.text))

 KEEP(*ram_module.o(.text*))

 . = ALIGN(4);

 __ram_module_functions_end__ = .;

} > AXISRAM AT> FLASH

__ram_module_functions_loadaddr__ = LOADADDR(.ram_module_functions);

.itcm_module_functions ALIGN(0x00002000,4):

{

 . = ALIGN(4);

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

24

 __itcm_module_functions_start__ = .;

 KEEP(*itcm_module.o(.text))

 KEEP(*itcm_module.o(.text*))

 . = ALIGN(4);

 __itcm_module_functions_end__ = .;

} > ITCMRAM AT> FLASH

__itcm_module_functions_loadaddr__ = LOADADDR(.itcm_module_functions);

.dtcm_module_functions ALIGN(0x20002000,4):

{

 . = ALIGN(4);

 __dtcm_module_functions_start__ = .;

 KEEP(*dtcm_module.o(.text))

 KEEP(*dtcm_module.o(.text*))

 . = ALIGN(4);

 __dtcm_module_functions_end__ = .;

} > DTCMRAM AT> FLASH

__dtcm_module_functions_loadaddr__ = LOADADDR(.dtcm_module_functions);

.sram0_module_functions ALIGN(0x30000800,4):

{

 . = ALIGN(4);

 __sram0_module_functions_start__ = .;

 KEEP(*sram0_module.o (.text))

 KEEP(*sram0_module.o(.text*))

 . = ALIGN(4);

 __sram0_module_functions_end__ = .;

} > SRAM0 AT> FLASH

__sram0_module_functions_loadaddr__ = LOADADDR(.sram0_module_functions);

2.5.2. C 代码中的文件定义

新建 dtcm_module.c、flash_module.c、itcm_module.c、ram_module.c 和 sram0_module.c

文件以及对应的头文件，并在每个 c 文件中定义各自的函数。主要如表 2-17. .c 文件定义所示。

表 2-17. .c 文件定义

/* dtcm_module.c */

int DtcmModule_Function1(int a, int b)

{

 /* Function with fast data access */

 printf("DtcmModule_Function1: a=%d, b=%d\r\n", a, b);

 dtcm_buffer[dtcm_counter % 64] = a + b;

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

25

 dtcm_counter++;

 return dtcm_buffer[(dtcm_counter - 1) % 64];

}

int DtcmModule_Function2(int x)

{

 /* Data-intensive function */

 printf("DtcmModule_Function2: x=%d\r\n", x);

 for(int i = 0; i < 32; i++) {

 dtcm_buffer[i] = x * i;

 }

 int sum = 0;

 for(int i = 0; i < 32; i++) {

 sum += dtcm_buffer[i];

 }

 return sum;

}

/* flash_module.c */

int FlashModule_Function1(int a, int b)

{

 /* Complex calculation function executed from FLASH */

 printf("FlashModule_Function1: a=%d, b=%d\r\n", a, b);

 int result = 0;

 for(int i = 0; i < 50; i++) {

 result += (a * b) + (i % 7);

 }

 return result;

}

int FlashModule_Function2(int x)

{

 /* Mathematical processing function */

 printf("FlashModule_Function2: x=%d\r\n", x);

 int temp = x;

 temp = temp * temp + 100;

 temp = temp % 1000;

 return temp;

}

/* itcm_module.c */

int ItcmModule_Function1(int a, int b)

{

 /* Ultra-fast critical function in ITCM */

 register int result = a * b;

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

26

 result = result + (result >> 4);

 result = result ^ 0x12345678;

 return result;

}

int ItcmModule_Function2(int x)

{

 /* Real-time processing function */

 register int temp = x;

 temp = (temp * 7) + 13;

 temp = temp & 0xFFFF;

 return temp;

}

/* ram_module.c */

int RamModule_Function1(int a, int b)

{

 /* Fast calculation function executed from RAM */

 printf("RamModule_Function1: a=%d, b=%d\r\n", a, b);

 register int result = a + b;

 result = result << 2;

 result = result ^ 0xAAAA;

 return result;

}

int RamModule_Function2(int x)

{

 /* High-speed processing function */

 printf("RamModule_Function2: x=%d\r\n", x);

 volatile int temp = x;

 for(int i = 0; i < 20; i++) {

 temp = (temp << 1) | (temp >> 31);

 }

 return temp;

}

/* sram0_module.c */

int Sram0Module_Function1(int a, int b)

{

 /* Function executed from SRAM0 */

 printf("Sram0Module_Function1: a=%d, b=%d\r\n", a, b);

 int result = a - b;

 if(result < 0) result = -result;

 return result * 2;

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

27

}

int Sram0Module_Function2(int x)

{

 /* Special processing function */

 printf("Sram0Module_Function2: x=%d\r\n", x);

 int temp = x;

 temp = temp + 0x1000;

 temp = temp & 0x7FFF;

 return temp;

}

2.5.3. 自定义初始化实现

在系统启动时调用自定义代码段初始化函数，如表 2-18. .c 文件加载到指定位置初始化实现所

示。

表 2-18. .c 文件加载到指定位置初始化实现

void ModuleLoader_Init(void)

{

 uint32_t *src, *dst;

 uint32_t size;

 /* copy RAM module functions */

 src = &__ram_module_functions_loadaddr__;

 dst = &__ram_module_functions_start__;

 size = ((uint32_t)&__ram_module_functions_end__ -

(uint32_t)&__ram_module_functions_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* copy ITCM module functions */

 src = &__itcm_module_functions_loadaddr__;

 dst = &__itcm_module_functions_start__;

 size = ((uint32_t)&__itcm_module_functions_end__ -

(uint32_t)&__itcm_module_functions_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* copy DTCM module functions */

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

28

 src = &__dtcm_module_functions_loadaddr__;

 dst = &__dtcm_module_functions_start__;

 size = ((uint32_t)&__dtcm_module_functions_end__ -

(uint32_t)&__dtcm_module_functions_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* copy SRAM0 module functions */

 src = &__sram0_module_functions_loadaddr__;

 dst = &__sram0_module_functions_start__;

 size = ((uint32_t)&__sram0_module_functions_end__ -

(uint32_t)&__sram0_module_functions_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

}

注意：初始化放在 cache 初始化函数之前。

2.5.4. 测试验证

通过串口打印的方式，测试将函数加载到指定位置内存布局验证，代码如表 2-19. .c 文件加载

到指定位置内存验证代码所示。

表 2-19. .c 文件加载到指定位置内存验证代码

void TestAllModules(void)

{

 int result;

 uint8_t test_data[16] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10};

 printf("=== Testing C File-based Module Functions ===\r\n");

 /* Test FLASH module */

 printf("\n--- Testing FLASH Module (flash_module.c) ---\r\n");

 printf("Executing FlashModule_Function1 at 0x%08X\r\n", (uint32_t)FlashModule_Function1);

 result = FlashModule_Function1(15, 25);

 printf("Result: %d\r\n", result);

 printf("Executing FlashModule_Function2 at 0x%08X\r\n", (uint32_t)FlashModule_Function2);

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

29

 result = FlashModule_Function2(100);

 printf("Result: %d\r\n", result);

 printf("Executing FlashModule_ProcessData at 0x%08X\r\n",

(uint32_t)FlashModule_ProcessData);

 FlashModule_ProcessData(test_data, 8);

 /* Test RAM module */

 printf("\n--- Testing RAM Module (ram_module.c) ---\r\n");

 printf("Executing RamModule_Function1 at 0x%08X\r\n", (uint32_t)RamModule_Function1);

 result = RamModule_Function1(10, 20);

 printf("Result: %d\r\n", result);

 printf("Executing RamModule_Function2 at 0x%08X\r\n", (uint32_t)RamModule_Function2);

 result = RamModule_Function2(0x1234);

 printf("Result: 0x%08X\r\n", result);

 printf("Executing RamModule_ProcessData at 0x%08X\r\n",

(uint32_t)RamModule_ProcessData);

 RamModule_ProcessData(test_data, 8);

 /* Test ITCM module */

 printf("\n--- Testing ITCM Module (itcm_module.c) ---\r\n");

 printf("Executing ItcmModule_Function1 at 0x%08X\r\n", (uint32_t)ItcmModule_Function1);

 result = ItcmModule_Function1(7, 11);

 printf("Result: %d\r\n", result);

 printf("Executing ItcmModule_Function2 at 0x%08X\r\n", (uint32_t)ItcmModule_Function2);

 result = ItcmModule_Function2(500);

 printf("Result: %d\r\n", result);

 printf("Executing ItcmModule_ProcessData at 0x%08X\r\n",

(uint32_t)ItcmModule_ProcessData);

 ItcmModule_ProcessData(test_data, 8);

 /* Test DTCM module */

 printf("\n--- Testing DTCM Module (dtcm_module.c) ---\r\n");

 printf("Executing DtcmModule_Function1 at 0x%08X\r\n", (uint32_t)DtcmModule_Function1);

 result = DtcmModule_Function1(33, 44);

 printf("Result: %d\r\n", result);

 printf("Executing DtcmModule_Function2 at 0x%08X\r\n", (uint32_t)DtcmModule_Function2);

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

30

 result = DtcmModule_Function2(200);

 printf("Result: %d\r\n", result);

 printf("Executing DtcmModule_ProcessData at 0x%08X\r\n",

(uint32_t)DtcmModule_ProcessData);

 DtcmModule_ProcessData(test_data, 8);

 /* Test SRAM0 module */

 printf("\n--- Testing SRAM0 Module (sram0_module.c) ---\r\n");

 printf("Executing Sram0Module_Function1 at 0x%08X\r\n", (uint32_t)Sram0Module_Function1);

 result = Sram0Module_Function1(60, 40);

 printf("Result: %d\r\n", result);

 printf("Executing Sram0Module_Function2 at 0x%08X\r\n", (uint32_t)Sram0Module_Function2);

 result = Sram0Module_Function2(0x8000);

 printf("Result: 0x%04X\r\n", result);

 printf("Executing Sram0Module_ProcessData at 0x%08X\r\n",

(uint32_t)Sram0Module_ProcessData);

 Sram0Module_ProcessData(test_data, 8);

 printf("\n==\r\n\r\n");

}

/*!

 \brief main function

 \param[in] none

 \param[out] none

 \retval none

*/

void main(void)

{

 gd_eval_com_init(EVAL_COM);

 printf("GD32H7xx C File-based Scatter Loading Example\r\n");

 printf("==\r\n");

 printf("This example demonstrates loading entire C files\r\n");

 printf("to different memory regions for optimized execution.\r\n\r\n");

 /* Initialize all modules */

 ModuleLoader_Init();

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

31

 /* Enable the CPU cache */

 cache_enable();

 mpu_config();

 /* Print all module function addresses */

 PrintModuleAddresses();

 /* Test all modules */

 TestAllModules();

 printf("All C file-based module tests completed!\r\n");

 printf("Each module file is loaded to its designated memory region.\r\n");

 uint32_t loop_count = 0;

 while(1) {

 loop_count++;

 /* Periodic address verification */

 if(loop_count % 10 == 1) {

 printf("\n=== Periodic Address Verification (Loop %d) ===\r\n", loop_count);

 printf("flash_module.c functions in FLASH:\r\n");

 printf(" FlashModule_Function1: 0x%08X\r\n", (uint32_t)FlashModule_Function1);

 printf("ram_module.c functions in AXISRAM:\r\n");

 printf(" RamModule_Function1 : 0x%08X\r\n", (uint32_t)RamModule_Function1);

 printf("itcm_module.c functions in ITCMRAM:\r\n");

 printf(" ItcmModule_Function1 : 0x%08X\r\n", (uint32_t)ItcmModule_Function1);

 printf("dtcm_module.c functions in DTCMRAM:\r\n");

 printf(" DtcmModule_Function1 : 0x%08X\r\n", (uint32_t)DtcmModule_Function1);

 printf("sram0_module.c functions in SRAM0:\r\n");

 printf(" Sram0Module_Function1: 0x%08X\r\n", (uint32_t)Sram0Module_Function1);

 printf("==\r\n\r\n");

 }

 /* Simple delay */

 for(volatile int i = 0; i < 2000000; i++);

 /* Stop after a few loops for demonstration */

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

32

 if(loop_count >= 3) {

 printf("C file-based scatter loading demonstration completed.\r\n");

 break;

 }

 }

 while(1) {

 }

}

测试打印日志如表 2-20. 将.c 文件加载到指定位置日志所示，测试结果与实际分配保持一致。

表 2-20. 将.c 文件加载到指定位置日志

GD32H7xx C File-based Scatter Loading Example

==

This example demonstrates loading entire C files

to different memory regions for optimized execution.

Initializing C file-based module functions...

Copying RAM module functions...

 RAM module: 0x2400D000 - 0x2400D158 (344 bytes)

Copying ITCM module functions...

 ITCM module: 0x00002000 - 0x000020E0 (224 bytes)

Copying DTCM module functions...

 DTCM module: 0x20002000 - 0x20002198 (408 bytes)

Copying SRAM0 module functions...

 SRAM0 module: 0x30000800 - 0x30000928 (296 bytes)

C file-based module functions initialization completed!

=== Module Function Entry Addresses ===

--- FLASH Module (flash_module.c) ---

Section Range: 0x08020000 - 0x08020130

FlashModule_Function1 : 0x08020001

FlashModule_Function2 : 0x08020065

FlashModule_ProcessData : 0x080200B1

FlashModule_GetProcessedValue: 0x08020115

--- RAM Module (ram_module.c) ---

FLASH Source: 0x08020130

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

33

RAM Target : 0x2400D000 - 0x2400D158

RamModule_Function1 : 0x2400D001

RamModule_Function2 : 0x2400D035

RamModule_ProcessData : 0x2400D075

RamModule_SortArray : 0x2400D11F

--- ITCM Module (itcm_module.c) ---

FLASH Source: 0x08020288

ITCM Target : 0x00002000 - 0x000020E0

ItcmModule_Function1 : 0x00002001

ItcmModule_Function2 : 0x0000202D

ItcmModule_ProcessData : 0x0000204F

ItcmModule_CriticalCalculation: 0x000020B3

--- DTCM Module (dtcm_module.c) ---

FLASH Source: 0x08020368

DTCM Target : 0x20002000 - 0x20002198

DtcmModule_Function1 : 0x20002001

DtcmModule_Function2 : 0x2000206D

DtcmModule_ProcessData : 0x200020D9

DtcmModule_GetBufferSum : 0x20002155

--- SRAM0 Module (sram0_module.c) ---

FLASH Source: 0x08020500

SRAM0 Target: 0x30000800 - 0x30000928

Sram0Module_Function1 : 0x30000801

Sram0Module_Function2 : 0x30000839

Sram0Module_ProcessData : 0x3000086D

Sram0Module_ValidateAndProcess: 0x300008F9

==

=== Testing C File-based Module Functions ===

--- Testing FLASH Module (flash_module.c) ---

Executing FlashModule_Function1 at 0x08020001

FlashModule_Function1: a=15, b=25

Result: 18897

Executing FlashModule_Function2 at 0x08020065

FlashModule_Function2: x=100

Result: 100

Executing FlashModule_ProcessData at 0x080200B1

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

34

FlashModule_ProcessData: processing 8 bytes

--- Testing RAM Module (ram_module.c) ---

Executing RamModule_Function1 at 0x2400D001

RamModule_Function1: a=10, b=20

Result: 43730

Executing RamModule_Function2 at 0x2400D035

RamModule_Function2: x=4660

Result: 0xFFFFFFFF

Executing RamModule_ProcessData at 0x2400D075

RamModule_ProcessData: processing 8 bytes

--- Testing ITCM Module (itcm_module.c) ---

Executing ItcmModule_Function1 at 0x00002001

Result: 305419817

Executing ItcmModule_Function2 at 0x0000202D

Result: 3513

Executing ItcmModule_ProcessData at 0x0000204F

--- Testing DTCM Module (dtcm_module.c) ---

Executing DtcmModule_Function1 at 0x20002001

DtcmModule_Function1: a=33, b=44

Result: 77

Executing DtcmModule_Function2 at 0x2000206D

DtcmModule_Function2: x=200

Result: 99200

Executing DtcmModule_ProcessData at 0x200020D9

DtcmModule_ProcessData: processing 8 bytes

--- Testing SRAM0 Module (sram0_module.c) ---

Executing Sram0Module_Function1 at 0x30000801

Sram0Module_Function1: a=60, b=40

Result: 40

Executing Sram0Module_Function2 at 0x30000839

Sram0Module_Function2: x=32768

Result: 0x1000

Executing Sram0Module_ProcessData at 0x3000086D

Sram0Module_ProcessData: processing 8 bytes

==

All C file-based module tests completed!

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

35

Each module file is loaded to its designated memory region.

=== Periodic Address Verification (Loop 1) ===

flash_module.c functions in FLASH:

 FlashModule_Function1: 0x08020001

ram_module.c functions in AXISRAM:

 RamModule_Function1 : 0x2400D001

itcm_module.c functions in ITCMRAM:

 ItcmModule_Function1 : 0x00002001

dtcm_module.c functions in DTCMRAM:

 DtcmModule_Function1 : 0x20002001

sram0_module.c functions in SRAM0:

 Sram0Module_Function1: 0x30000801

==

C file-based scatter loading demonstration completed.

2.6. SDRAM 分散加载实现

SDRAM 分散加载的实现可参考 2.3、2.4、2.5 章节描述，在进行自定义初始化之前，需要实

现 EXMC 初始化和 MPU 的相关配置，代码如表 2-21. SDRAM 初始化代码所示。

表 2-21. SDRAM 初始化代码

#include "exmc_sdram.h"

/*!

 \brief initialize the sdram

 \param[in] none

 \param[out] none

 \retval none

*/

void DoInit(void)

{

 /* configure the clock of EXMC */

 rcu_exmc_config();

 /* configure the MPU */

 mpu_config();

 /* configure the EXMC access mode */

 exmc_synchronous_dynamic_ram_init(EXMC_SDRAM_DEVICE0);

 __IO int i,j;

 for(i=0;i<500;i++){

 for(j=0;j<5000;j++);

 }

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

36

}

注意 ：在 M7 内核的默认配置中，某些地址位于禁止指令执行的区域。因此，如果将代码加载

到这些区域，在执行过程中会发生错误。GD32H7xx 的 EXMC 中的 SDRAM 地址分配范围为

0xC0000000-0xDFFFFFFF，该范围属于禁止指令执行的地址区域。需要配置 MPU（内存保

护单元）寄存器，以启用 0xC0000000 地址范围内的指令执行。

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

37

3. 版本历史

表 3-1. 版本历史

版本号 说明 日期

1.0 首次发布 2025 年 12 月 31 日

AN311

 适用于 Arm Cortex-M 处理器的 GD32 Embedded Builder

分散加载说明

38

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This

document, including any product of the Company described in this document (the “Product”), is owned by the Company

according to the laws of the People’s Republic of China and other applicable laws. The Company reserves all rights

under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the

Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the

property of their respective owner and referred to for identification purposes only.

To the maximum extent permitted by applicable law, the Company makes no representations or warranties of any

kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor

does the Company assume any liability arising out of the application or use of any Product. Any information provided in

this document is provided only for reference purposes. It is the sole responsibility of the user of this document to

determine whether the Product is suitable and fit for its applications and products planned, and properly design, program,

and test the functionality and safety of its applications and products planned using the Product. The Product is designed,

developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the

Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities,

atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments,

pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems

(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not

limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for

example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,

Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-

contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other

transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected

to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses").

Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company

is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or

distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.

Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its

suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims

for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to

make changes, corrections, modifications or improvements to this document and the Product described herein at any

time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from

future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2026 GigaDevice Semiconductor Inc. – All rights reserved

	目录
	图索引
	表索引
	1. 简介
	2. 分散加载在Embedded Builder中的实现
	2.1. 使用手动编写的ld文件
	2.2. VMA和LMA
	2.3. 将全局变量和全局数组加载到指定位置
	2.3.1. 自定义段
	2.3.2. C代码中的变量定义
	2.3.3. 自定义初始化实现
	2.3.4. 测试验证

	2.4. 将函数加载到指定位置
	2.4.1. 自定义段
	2.4.2. C代码中的函数定义
	2.4.3. 自定义初始化实现
	2.4.4. 测试验证

	2.5. 将.c文件代码段加载到指定位置
	2.5.1. 自定义段
	2.5.2. C代码中的文件定义
	2.5.3. 自定义初始化实现
	2.5.4. 测试验证

	2.6. SDRAM分散加载实现

	3. 版本历史

