

GigaDevice Semiconductor Inc.

Scatter Loading Instructions of GD32

Embedded Builder for Arm Cortex-M

Processor

Application Note

AN311

Revision 1.0

(Dec. 2025)

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

1

Table of Contents

Table of Contents ... 1

List of Figures .. 2

List of Tables .. 3

1. Introduction ... 4

2. Implementation of scatter loading in Embedded Builder 5

2.1. Use manually written ld file... 5

2.2. VMA and LMA .. 5

2.3. Load global variables and global arrays to the specified location 6

2.3.1. Custom section ... 6

2.3.2. Variable definitions in C code ... 7

2.3.3. Custom initialization implementation .. 9

2.3.4. Test verification ... 10

2.4. Load functions to the specified location ... 14

2.4.1. Custom section ... 14

2.4.2. Function definition in C code .. 15

2.4.3. Custom initialization implementation .. 17

2.4.4. Test verification ... 19

2.5. Load .c file code section to the specified location .. 23

2.5.1. Custom section ... 23

2.5.2. File definition in C code .. 25

2.5.3. Custom initialization implementation .. 28

2.5.4. Test verification ... 29

2.6. SDRAM scatter loading implementation. ... 36

3. Revision history .. 38

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

2

List of Figures

Figure 2-1. Project directory structure in GD32 Embedded Builder ... 5

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

3

List of Tables

Table 2-1. Overview of address allocation for loading global variables and global arrays to

specified locations ... 6

Table 2-2. Allocation of global variables and global arrays to specified locations in

gd32h7xx_flash.ld .. 6

Table 2-3. Header file macro definitions for loading global variables and global arrays to

specified locations ... 8

Table 2-4. Global variable and global array loading to specified location variable definitions ... 8

Table 2-5. Global variable and global array loading to specified location data section

initialization implementation ... 9

Table 2-6. Global variable and global array loading to specified location memory verification

code ... 10

Table 2-7. Global variable and global array loading to specified location logs........................... 12

Table 2-8. Overview of function loading to specified addresses .. 14

Table 2-9. Loading global variables and global arrays to specified locations in gd32h7xx_flash.ld

 ... 14

Table 2-10. Header file macro definitions for loading functions to specified locations 15

Table 2-11. Function definition and implementation for loading functions to specified locations

 ... 15

Table 2-12. Initialization implementation for loading functions to specified locations 18

Table 2-13. Memory verification code for loading functions to specified locations 19

Table 2-14. Load function to the specified location log ... 21

Table 2-15. Overview of .c loading to specified address allocation ... 23

Table 2-16. Allocation of global variables and global arrays to specified location in

gd32h7xx_flash.ld .. 24

Table 2-17. Definition of .c files .. 25

Table 2-18. Initialization implementation of .c files loaded to specified location 28

Table 2-19. Verification code for .c file loaded into the specified memory 29

Table 2-20. Log for loading .c file into the specified memory ... 33

Table 2-21. SDRAM initialization code ... 36

Table 3-1. Revision history .. 38

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

4

1. Introduction

`ld` is one of the Linkers in the GNU binutils toolset. It links various object files and library

files, redirects their data, and completes symbol resolution. Linking primarily involves four

tasks: storage allocation, symbol management, libraries, and relocation. Therefore, based on

the requirements of project code, we can modify this file to specify the storage location of the

code sections.

This application note is based on the GD32H75x series, using the GD32H759I-EVAL

development board with Embedded Builder version 1.5.18. The main implemented functions

are as follows:

◼ Implement user-defined global variables and arrays loaded to specified locations.

◼ Implement user-defined functions loaded to specified locations.

◼ Implement user-specified .c files loaded to specified locations.

◼ Load to the specified position of SDRAM to achieve the above function.

This manual is also applicable to GD32 Arm Cortex® M3/M4/M23/M33/M7 core MCU products.

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

5

2. Implementation of scatter loading in Embedded

Builder

2.1. Use manually written ld file

This project directly uses the manually written ld file. In Embedded Builder, double-click the

gd32h7xx_flash.ld file under "Window->Show View->Project Explorer->ldscripts". The project

directory structure is shown in Figure 2-1. Project directory structure in GD32 Embedded

Builder, as illustrated in the project directory structure of Embedded Builder. Alternatively,

user can open and edit it in the directory "..\ldscripts\gd32h7xx_flash.ld".

Figure 2-1. Project directory structure in GD32 Embedded Builder

2.2. VMA and LMA

In the linker script, VMA and LMA are two core concepts used to control the distribution of

program sections in memory. VMA (Virtual Memory Address) is the memory address where a

section resides during program execution, also known as the runtime address. LMA (Load

Memory Address) is the physical address where a section is stored during programming, also

known as the load address. To implement scatter loading functionality, it is essential to

understand the core concepts of VMA and LMA. For a detailed introduction to VMA and LMA,

refer to "AN200 GD32 Embedded Builder Linker Script File Introduction".

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

6

2.3. Load global variables and global arrays to the specified

location

2.3.1. Custom section

Add user-defined sections in the linker script to allocate different types of data to specified

addresses, as shown in Table 2-1. Overview of address allocation for loading global

variables and global arrays to specified locations. The linker file code is as shown in Table

2-2. Allocation of global variables and global arrays to specified locations in

gd32h7xx_flash.ld.

Table 2-1. Overview of address allocation for loading global variables and global arrays

to specified locations

Segment type Section name FLASH address RAM address Description

Initialize

variables
.data.user_vars 0x08008000 0x24008000

Variable with an

initial value

Initialize array .data.user_arrays 0x08009000 0x24009000
Array with an initial

value

Uninitialized

variables
.bss.user_vars - 0x2400A000

Zero-initialized

variables

Uninitialized

array
.bss.user_arrays - 0x2400B000

Zero-initialized

array

Constant array
.rodata.user_const_ar

rays
0x08007000 - Const array

Table 2-2. Allocation of global variables and global arrays to specified locations in

gd32h7xx_flash.ld

/* user initializes variable section */

.user_global_vars ALIGN(0x24008000, 4) : AT(ALIGN(0x08008000, 4))

{

 . = ALIGN(4);

 __user_global_vars_start__ = .;

 KEEP(*(.data.user_vars))

 . = ALIGN(4);

 __user_global_vars_end__ = .;

 __user_global_vars_size__ = __user_global_vars_end__ - __user_global_vars_start__;

}

__user_global_vars_loadaddr__ = LOADADDR(.user_global_vars);

/* user initializes array section */

.user_global_arrays ALIGN(0x24009000, 4) : AT(ALIGN(0x08009000, 4))

{

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

7

 . = ALIGN(4);

 __user_global_arrays_start__ = .;

 KEEP(*(.data.user_arrays))

 . = ALIGN(4);

 __user_global_arrays_end__ = .;

 __user_global_arrays_size__ = __user_global_arrays_end__ - __user_global_arrays_start__;

}

__user_global_arrays_loadaddr__ = LOADADDR(.user_global_arrays);

/* user uninitialized variable section */

.user_uninit_vars ALIGN(0x2400A000, 4) (NOLOAD) :

{

 . = ALIGN(4);

 __user_uninit_vars_start__ = .;

 KEEP(*(.bss.user_vars))

 . = ALIGN(4);

 __user_uninit_vars_end__ = .;

 __user_uninit_vars_size__ = __user_uninit_vars_end__ - __user_uninit_vars_start__;

}

/* user uninitialized array section */

.user_uninit_arrays ALIGN(0x2400B000, 4) (NOLOAD) :

{

 . = ALIGN(4);

 __user_uninit_arrays_start__ = .;

 KEEP(*(.bss.user_arrays))

 . = ALIGN(4);

 __user_uninit_arrays_end__ = .;

 __user_uninit_arrays_size__ = __user_uninit_arrays_end__ - __user_uninit_arrays_start__;

}

/* user constant array section */

.user_const_arrays ALIGN(0x08007000, 4) :

{

 . = ALIGN(4);

 __user_const_arrays_start__ = .;

 KEEP(*(.rodata.user_const_arrays))

 . = ALIGN(4);

 __user_const_arrays_end__ = .;

 __user_const_arrays_size__ = __user_const_arrays_end__ - __user_const_arrays_start__;

} > FLASH

2.3.2. Variable definitions in C code

Define section attribute macros in the header file to improve code readability, as shown in

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

8

Table 2-3. Header file macro definitions for loading global variables and global arrays

to specified locations.

Table 2-3. Header file macro definitions for loading global variables and global arrays

to specified locations

/* initialized data section attributes - will be loaded from FLASH to RAM */

#define USER_INIT_VAR __attribute__((section(".data.user_vars")))

#define USER_INIT_ARRAY __attribute__((section(".data.user_arrays")))

/* uninitialized data section attributes - only in RAM, cleared at startup */

#define USER_UNINIT_VAR __attribute__((section(".bss.user_vars")))

#define USER_UNINIT_ARRAY __attribute__((section(".bss.user_arrays")))

#define USER_CONST_ARRAY __attribute__((section(".rodata.user_const_arrays")))

Variable definitions are illustrated in Table 2-4. Global variable and global array loading to

specified location variable definitions.

Table 2-4. Global variable and global array loading to specified location variable

definitions

/* user initialized global variables definition - will be placed in .data.user_vars section */

USER_INIT_VAR int32_t system_status = 1;

USER_INIT_VAR uint32_t device_serial = 0x12345678;

USER_INIT_VAR uint16_t firmware_version = 0x0102;

USER_INIT_VAR uint8_t system_config = 0xAB;

/* user initialized global arrays definition - will be placed in .data.user_arrays section */

USER_INIT_ARRAY uint16_t calibration_data[10] = {

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

};

USER_INIT_ARRAY uint8_t device_info[32] = {

'G','D','3','2','H','7','x','x',' ','D','e','v','i','c','e',0

};

/* User uninitialized global variables definition - will be placed in .bss.user_vars section */

USER_UNINIT_VAR volatile uint32_t tick_counter;

USER_UNINIT_VAR volatile uint16_t error_code;

USER_UNINIT_VAR volatile uint8_t system_state;

USER_UNINIT_VAR uint32_t runtime_config;

/* User uninitialized global arrays definition - will be placed in .bss.user_arrays section */

USER_UNINIT_ARRAY uint8_t uart_tx_buffer[512];

USER_UNINIT_ARRAY uint8_t uart_rx_buffer[512];

USER_UNINIT_ARRAY uint16_t adc_samples[256];

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

9

USER_UNINIT_ARRAY char log_buffer[1024];

/* Const array definition */

USER_CONST_ARRAY const uint16_t lookup_table[256] = {

0x0000, 0x0001, 0x0004, 0x0009,

};

2.3.3. Custom initialization implementation

Call the custom section initialization function at system startup, as shown in Table 2-5. Global

variable and global array loading to specified location data section initialization

implementation.

Table 2-5. Global variable and global array loading to specified location data section

initialization implementation

/* Data initialization function implementation */

void UserData_Init(void)

{

 uint32_t *src, *dst;

 uint32_t size;

 /* 1. Initialize user global variables segment - copy from FLASH to RAM */

 src = &__user_global_vars_loadaddr__;

 dst = &__user_global_vars_start__;

 size = ((uint32_t)&__user_global_vars_end__ - (uint32_t)&__user_global_vars_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* 2. Initialize user global arrays segment - copy from FLASH to RAM */

 src = &__user_global_arrays_loadaddr__;

 dst = &__user_global_arrays_start__;

 size = ((uint32_t)&__user_global_arrays_end__ - (uint32_t)&__user_global_arrays_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* 3. Clear user uninitialized variables segment */

 dst = &__user_uninit_vars_start__;

 size = ((uint32_t)&__user_uninit_vars_end__ - (uint32_t)&__user_uninit_vars_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = 0;

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

10

 }

 /* 4. Clear user uninitialized arrays segment */

 dst = &__user_uninit_arrays_start__;

 size = ((uint32_t)&__user_uninit_arrays_end__ - (uint32_t)&__user_uninit_arrays_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = 0;

 }

}

Note:

1. Initialization should be placed before the cache initialization function.

2. Constant arrays do not require initialization operations.

2.3.4. Test verification

Verify global variable and global array loading to specified location memory layout through

UART printing. Code is shown in Table 2-6. Global variable and global array loading to

specified location memory verification code.

Table 2-6. Global variable and global array loading to specified location memory

verification code

void UserData_PrintMemoryInfo(void)

{

 printf("=== User-defined Memory Segments Information ===\r\n");

 printf("1. Initialized variables segment:\r\n");

 printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_global_vars_start__,

 (uint32_t)&__user_global_vars_end__,

 (uint32_t)&__user_global_vars_end__ - (uint32_t)&__user_global_vars_start__);

 printf(" FLASH source: 0x%08X\r\n", (uint32_t)&__user_global_vars_loadaddr__);

 printf("2. Initialized arrays segment:\r\n");

 printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_global_arrays_start__,

 (uint32_t)&__user_global_arrays_end__,

 (uint32_t)&__user_global_arrays_end__ - (uint32_t)&__user_global_arrays_start__);

 printf(" FLASH source: 0x%08X\r\n", (uint32_t)&__user_global_arrays_loadaddr__);

 printf("3. Uninitialized variables segment:\r\n");

 printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_uninit_vars_start__,

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

11

 (uint32_t)&__user_uninit_vars_end__,

 (uint32_t)&__user_uninit_vars_end__ - (uint32_t)&__user_uninit_vars_start__);

 printf("4. Uninitialized arrays segment:\r\n");

 printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_uninit_arrays_start__,

 (uint32_t)&__user_uninit_arrays_end__,

 (uint32_t)&__user_uninit_arrays_end__ - (uint32_t)&__user_uninit_arrays_start__);

printf("5. Constant arrays segment:\r\n");

printf(" FLASH address: 0x%08X - 0x%08X (%d bytes)\r\n",

 (uint32_t)&__user_const_arrays_start__,

 (uint32_t)&__user_const_arrays_end__,

 (uint32_t)&__user_const_arrays_end__ - (uint32_t)&__user_const_arrays_start__);

printf("==\r\n\r\n");

}

int main(void)

{

 gd_eval_com_init(EVAL_COM);

 /*system initialization */

 printf("GD32H7xx User-defined Data Segment Example\r\n");

 printf("==\r\n");

 /* initialize user data segment */

 UserData_Init();

 /* enable the CPU cache */

 cache_enable();

 mpu_config();

 /* print memory information */

 UserData_PrintMemoryInfo();

 /* verify initialization data */

 printf("=== Verify Initialization Data ===\r\n");

 printf("system_status = %d (addr: 0x%08X)\r\n", system_status, (uint32_t)&system_status);

 printf("device_serial = 0x%08X (addr: 0x%08X)\r\n", device_serial, (uint32_t)&device_serial);

 printf("calibration_data[0] = %d (addr: 0x%08X)\r\n", calibration_data[0],

(uint32_t)&calibration_data[0]);

 printf("calibration_data[9] = %d (addr: 0x%08X)\r\n", calibration_data[9],

(uint32_t)&calibration_data[9]);

 printf("calibration_data array base addr: 0x%08X\r\n", (uint32_t)calibration_data);

 printf("device_info = %s (addr: 0x%08X)\r\n", (char*)device_info, (uint32_t)device_info);

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

12

 /* verify const array */

 printf("lookup_table[0] = 0x%04X (addr: 0x%08X)\r\n", lookup_table[0],

(uint32_t)&lookup_table[0]);

 printf("lookup_table[255] = 0x%04X (addr: 0x%08X)\r\n", lookup_table[255],

(uint32_t)&lookup_table[255]);

printf("lookup_table array base addr: 0x%08X\r\n", (uint32_t)lookup_table);

 /* test uninitialized data usage */

 printf("\r\n=== Test Uninitialized Data Usage ===\r\n");

 /* buffer filling test */

 for(int i = 0; i < 10; i++) {

 uart_tx_buffer[i] = i + 0x30; // '0' to '9'

 adc_samples[i] = i * 100;

 }

 uart_tx_buffer[10] = '\0';

 printf("uart_tx_buffer = %s (addr: 0x%08X)\r\n", (char*)uart_tx_buffer, (uint32_t)uart_tx_buffer);

 printf("adc_samples[5] = %d (addr: 0x%08X)\r\n", adc_samples[5], (uint32_t)&adc_samples[5]);

 printf("adc_samples array base addr: 0x%08X\r\n", (uint32_t)adc_samples);

 printf("\r\n=== System Ready ===\r\n");

 printf("User-defined data segments test completed successfully!\r\n");

 /* main loop - simple endless loop */

 while(1) {

 }

}

Test print logs are shown in Table 2-7. Global variable and global array loading to

specified location logs, with test results consistent with actual allocation.

Table 2-7. Global variable and global array loading to specified location logs

GD32H7xx User-defined Data Segment Example

==

Starting initialization of user-defined data segments...

Initializing user global variables segment...

 Address range: 0x24008000 - 0x2400800C

 Data size: 12 bytes

Initializing user global arrays segment...

 Address range: 0x24009000 - 0x24009034

 Data size: 52 bytes

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

13

Clearing user uninitialized variables segment...

 Address range: 0x2400A000 - 0x2400A00C

 Data size: 12 bytes

Clearing user uninitialized arrays segment...

 Address range: 0x2400B000 - 0x2400BA00

 Data size: 2560 bytes

User data segments initialization completed!

=== User-defined Memory Segments Information ===

1. Initialized variables segment:

 RAM address: 0x24008000 - 0x2400800C (12 bytes)

 FLASH source: 0x08008000

2. Initialized arrays segment:

 RAM address: 0x24009000 - 0x24009034 (52 bytes)

 FLASH source: 0x08009000

3. Uninitialized variables segment:

 RAM address: 0x2400A000 - 0x2400A00C (12 bytes)

4. Uninitialized arrays segment:

 RAM address: 0x2400B000 - 0x2400BA00 (2560 bytes)

5. Constant arrays segment:

 FLASH address: 0x0800A000 - 0x0800A200 (512 bytes)

==

=== Verify Initialization Data ===

system_status = 1 (addr: 0x24008000)

device_serial = 0x12345678 (addr: 0x24008004)

calibration_data[0] = 100 (addr: 0x24009000)

calibration_data[9] = 1000 (addr: 0x24009012)

calibration_data array base addr: 0x24009000

device_info = GD32H7xx Device (addr: 0x24009014)

lookup_table[0] = 0xA55A (addr: 0x0800A000)

lookup_table[255] = 0x0000 (addr: 0x0800A0FE)

lookup_table array base addr: 0x0800A000

=== Test Uninitialized Data Usage ===

uart_tx_buffer = 0123456789 (addr: 0x2400B000)

adc_samples[5] = 500 (addr: 0x2400B40A)

adc_samples array base addr: 0x2400B400

=== System Ready ===

User-defined data segments test completed successfully!

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

14

2.4. Load functions to the specified location

2.4.1. Custom section

Add user-defined sections in the linker script to allocate functions to specific addresses, with

address allocation as shown in Table 2-8. Overview of function loading to specified

addresses, with linker file code shown in Table 2-9. Loading global variables and global

arrays to specified locations in gd32h7xx_flash.ld.

Table 2-8. Overview of function loading to specified addresses

Segment type Section name FLASH address RAM address Description

FLASH

function
.text.flash_functions 0x08010000 - Execute directly in FLASH

RAM function .text.ram_functions Auto allocation 0x2400C000 Copy to RAM for execution

ITCM function .text.itcm_functions Auto allocation 0x00001000
Copy to ITCMRAM for

execution

DTCM function .text.dtcm_functions Auto allocation 0x20001000
Copy to DTCMRAM for

execution

Table 2-9. Loading global variables and global arrays to specified locations in

gd32h7xx_flash.ld

/* User custom function scatter loading */

.user_flash_functions 0x08010000 :

{

. = ALIGN(4);

__user_flash_functions_start__ = .;

KEEP(*(.text.flash_functions))

. = ALIGN(4);

__user_flash_functions_end__ = .;

__user_flash_functions_size__ = __user_flash_functions_end__ - __user_flash_functions_start__;

} > FLASH

.user_ram_functions 0x2400C000 :

{

. = ALIGN(4);

__user_ram_functions_start__ = .;

KEEP(*(.text.ram_functions))

. = ALIGN(4);

__user_ram_functions_end__ = .;

__user_ram_functions_size__ = __user_ram_functions_end__ - __user_ram_functions_start__;

} > AXISRAM AT> FLASH

__user_ram_functions_loadaddr__ = LOADADDR(.user_ram_functions);

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

15

.user_itcm_functions 0x00001000 :

{

. = ALIGN(4);

__user_itcm_functions_start__ = .;

KEEP(*(.text.itcm_functions))

. = ALIGN(4);

__user_itcm_functions_end__ = .;

__user_itcm_functions_size__ = __user_itcm_functions_end__ - __user_itcm_functions_start__;

} > ITCMRAM AT> FLASH

__user_itcm_functions_loadaddr__ = LOADADDR(.user_itcm_functions);

.user_dtcm_functions 0x20001000 :

{

. = ALIGN(4);

__user_dtcm_functions_start__ = .;

KEEP(*(.text.dtcm_functions))

. = ALIGN(4);

__user_dtcm_functions_end__ = .;

__user_dtcm_functions_size__ = __user_dtcm_functions_end__ - __user_dtcm_functions_start__;

} > DTCMRAM AT> FLASH

__user_dtcm_functions_loadaddr__ = LOADADDR(.user_dtcm_functions);

2.4.2. Function definition in C code

Define section attribute macros in the header file to improve code readability, as shown in

Table 2-10. Header file macro definitions for loading functions to specified locations.

Table 2-10. Header file macro definitions for loading functions to specified locations

/* Function section attributes */

#define FLASH_FUNCTION __attribute__((section(".text.flash_functions")))

#define RAM_FUNCTION __attribute__((section(".text.ram_functions")))

#define ITCM_FUNCTION __attribute__((section(".text.itcm_functions")))

#define DTCM_FUNCTION __attribute__((section(".text.dtcm_functions")))

Variable definition example as shown in Table 2-11. Function definition and

implementation for loading functions to specified locations.

Table 2-11. Function definition and implementation for loading functions to specified

locations

FLASH_FUNCTION int FlashFunction_Calculate(int a, int b)

{

 printf("FlashFunction_Calculate: a=%d, b=%d\r\n", a, b);

 int result = 0;

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

16

 for(int i = 0; i < 50; i++) {

 result += (a * b) + (i % 10);

 }

 printf("FlashFunction_Calculate result: %d\r\n", result);

 return result;

}

FLASH_FUNCTION void FlashFunction_ProcessData(uint8_t* data, uint32_t len)

{

 printf("FlashFunction_ProcessData: processing %d bytes\r\n", len);

 for(uint32_t i = 0; i < len; i++) {

 data[i] = data[i] ^ 0x5A;

 }

 printf("Data processing completed\r\n");

}

RAM_FUNCTION int RamFunction_FastProcess(int data)

{

 //printf("RamFunction_FastProcess: input=0x%08X\r\n", data);

 volatile int temp = data;

 temp = (temp << 1) ^ 0xA5A5;

 temp = (temp >> 1) | 0x5A5A0000;

 //printf("RamFunction_FastProcess result: 0x%08X\r\n", temp);

 return temp;

}

RAM_FUNCTION void RamFunction_ProcessBuffer(uint16_t* buffer, uint32_t size)

{

 printf("RamFunction_ProcessBuffer: processing %d elements\r\n", size);

 for(uint32_t i = 0; i < size; i++) {

 buffer[i] = (buffer[i] << 1) | (buffer[i] >> 15);

 }

 printf("Buffer processing completed\r\n");

}

ITCM_FUNCTION int ItcmFunction_CriticalTask(int input)

{

 printf("ItcmFunction_CriticalTask: input=%d\r\n", input);

 register int result = input;

 result = (result * 3) + 7;

 result = result ^ 0x12345678;

 result = (result << 4) | (result >> 28);

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

17

 printf("ItcmFunction_CriticalTask result: %d\r\n", result);

 return result;

}

ITCM_FUNCTION uint32_t ItcmFunction_BitOperation(uint32_t value)

{

 printf("ItcmFunction_BitOperation: input=0x%08X\r\n", value);

 uint32_t result = value;

 result = ~result;

 result = (result & 0xAAAAAAAA) | ((result & 0x55555555) << 1);

 result = (result & 0xCCCCCCCC) | ((result & 0x33333333) << 2);

 printf("ItcmFunction_BitOperation result: 0x%08X\r\n", result);

 return result;

}

DTCM_FUNCTION int DtcmFunction_DataProcess(int value)

{

 printf("DtcmFunction_DataProcess: input=%d\r\n", value);

 static int buffer[32];

 for(int i = 0; i < 32; i++) {

 buffer[i] = value + (i * 10);

 }

 int sum = 0;

 for(int i = 0; i < 32; i++) {

 sum += buffer[i];

 }

 printf("DtcmFunction_DataProcess result: %d\r\n", sum);

 return sum;

}

DTCM_FUNCTION void DtcmFunction_ArrayOperation(uint32_t* array, uint32_t count)

{

 printf("DtcmFunction_ArrayOperation: processing %d elements\r\n", count);

 for(uint32_t i = 0; i < count; i++) {

 array[i] = array[i] * 2 + 1;

 }

 printf("Array operation completed\r\n");

}

2.4.3. Custom initialization implementation

Call the custom code section initialization function during system startup, as shown in Table

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

18

2-12. Initialization implementation for loading functions to specified locations.

Table 2-12. Initialization implementation for loading functions to specified locations

void UserFunctions_Init(void)

{

 uint32_t *src, *dst;

 uint32_t size;

/* Copy RAM functions */

 src = &__user_ram_functions_loadaddr__;

 dst = &__user_ram_functions_start__;

 size = ((uint32_t)&__user_ram_functions_end__ - (uint32_t)&__user_ram_functions_start__) /

4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* Copy ITCM functions */

 src = &__user_itcm_functions_loadaddr__;

 dst = &__user_itcm_functions_start__;

 size = ((uint32_t)&__user_itcm_functions_end__ - (uint32_t)&__user_itcm_functions_start__) /

4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* Copy DTCM functions */

 printf("Copying DTCM functions...\r\n");

 src = &__user_dtcm_functions_loadaddr__;

 dst = &__user_dtcm_functions_start__;

 size = ((uint32_t)&__user_dtcm_functions_end__ - (uint32_t)&__user_dtcm_functions_start__)

/ 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

}

Note: Initialization is placed before the cache initialization function.

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

19

2.4.4. Test verification

Test the memory layout verification of loading functions to specified locations through UART

printing, with the code shown in Table 2-13. Memory verification code for loading

functions to specified locations.

Table 2-13. Memory verification code for loading functions to specified locations

void TestUserFunctions(void)

{

 printf("=== Testing User Functions ===\r\n");

 uint8_t test_data[16] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10};

 uint16_t test_buffer[8] = {100, 200, 300, 400, 500, 600, 700, 800};

 uint32_t test_array[5] = {10, 20, 30, 40, 50};

 printf("\n--- Testing FLASH Functions ---\r\n");

 FlashFunction_Calculate(15, 25);

 FlashFunction_ProcessData(test_data, 8);

 printf("\n--- Testing RAM Functions ---\r\n");

 RamFunction_FastProcess(0x12345678);

 RamFunction_ProcessBuffer(test_buffer, 8);

 printf("\n--- Testing ITCM Functions ---\r\n");

 ItcmFunction_CriticalTask(42);

 ItcmFunction_BitOperation(0xAAAA5555);

 printf("\n--- Testing DTCM Functions ---\r\n");

 DtcmFunction_DataProcess(100);

 DtcmFunction_ArrayOperation(test_array, 5);

 printf("\n===============================\r\n\r\n");

}

/*!

 \brief main function

 \param[in] none

 \param[out] none

 \retval none

*/

void main(void)

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

20

{

 gd_eval_com_init(EVAL_COM);

 printf("GD32H7xx User Functions Address Test\r\n");

 printf("===================================\r\n");

 /* initialize user functions */

 UserFunctions_Init();

 /* enable the CPU cache */

 cache_enable();

 mpu_config();

 /* print all function addresses */

 PrintFunctionAddresses();

 /* test all functions */

 TestUserFunctions();

 printf("All function tests completed!\r\n");

 printf("Function address verification complete.\r\n\r\n");

 /* main application loop with periodic address display */

 uint32_t counter = 0;

 while(1) {

 counter++;

 if(counter % 5 == 1) {

 /* periodically show function addresses */

 printf("=== Periodic Address Check %d ===\r\n", counter);

 printf("FlashFunction_Calculate: 0x%08X\r\n", (uint32_t)FlashFunction_Calculate);

 printf("RamFunction_FastProcess: 0x%08X\r\n",

(uint32_t)RamFunction_FastProcess);

 printf("ItcmFunction_CriticalTask: 0x%08X\r\n", (uint32_t)ItcmFunction_CriticalTask);

 printf("DtcmFunction_DataProcess: 0x%08X\r\n",

(uint32_t)DtcmFunction_DataProcess);

 printf("==============================\r\n\r\n");

 }

 /* call functions to verify they work at reported addresses */

 FlashFunction_Calculate(counter, counter + 10);

 RamFunction_FastProcess(counter * 0x1000);

 ItcmFunction_CriticalTask(counter + 100);

 DtcmFunction_DataProcess(counter * 50);

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

21

 /* delay between iterations */

 for(volatile int i = 0; i < 2000000; i++);

 /* stop after several iterations */

 if(counter >= 3) {

 printf("Address verification demo completed.\r\n");

 break;

 }

 }

 while(1) {

 }

}

Test print log as shown in Table 2-14. Load function to the specified location log, test

results are consistent with the actual allocation.

Table 2-14. Load function to the specified location log

GD32H7xx User Functions Address Test

===================================

Initializing user functions...

Copying RAM functions...

 RAM functions: 0x2400C000 - 0x2400C0B0 (176 bytes)

Copying ITCM functions...

 ITCM functions: 0x00001000 - 0x000010A0 (160 bytes)

Copying DTCM functions...

 DTCM functions: 0x20001000 - 0x200010E0 (224 bytes)

User functions initialization completed!

=== Function Entry Addresses ===

--- FLASH Functions (Direct Execution) ---

Section Range: 0x08010000 - 0x080100C4

FlashFunction_Calculate : 0x08010001

FlashFunction_ProcessData : 0x08010071

--- RAM Functions (Copied from FLASH) ---

FLASH Source: 0x080100C4

RAM Target : 0x2400C000 - 0x2400C0B0

RamFunction_FastProcess : 0x2400C001

RamFunction_ProcessBuffer : 0x2400C035

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

22

--- ITCM Functions ---

FLASH Source: 0x08010174

ITCM Target : 0x00001000 - 0x000010A0

ItcmFunction_CriticalTask : 0x00001001

ItcmFunction_BitOperation : 0x00001049

--- DTCM Functions ---

FLASH Source: 0x08010214

DTCM Target : 0x20001000 - 0x200010E0

DtcmFunction_DataProcess : 0x20001001

DtcmFunction_ArrayOperation : 0x2000107D

================================

=== Testing User Functions ===

--- Testing FLASH Functions ---

FlashFunction_Calculate: a=15, b=25

FlashFunction_Calculate result: 18975

FlashFunction_ProcessData: processing 8 bytes

Data processing completed

--- Testing RAM Functions ---

RamFunction_ProcessBuffer: processing 8 elements

Buffer processing completed

--- Testing ITCM Functions ---

ItcmFunction_CriticalTask: input=42

ItcmFunction_CriticalTask result: 591753169

ItcmFunction_BitOperation: input=0xAAAA5555

ItcmFunction_BitOperation result: 0x88888888

--- Testing DTCM Functions ---

DtcmFunction_DataProcess: input=100

DtcmFunction_DataProcess result: 8160

DtcmFunction_ArrayOperation: processing 5 elements

Array operation completed

===============================

All function tests completed!

Function address verification complete.

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

23

=== Periodic Address Check 1 ===

FlashFunction_Calculate: 0x08010001

RamFunction_FastProcess: 0x2400C001

ItcmFunction_CriticalTask: 0x00001001

DtcmFunction_DataProcess: 0x20001001

==============================

FlashFunction_Calculate: a=1, b=11

FlashFunction_Calculate result: 775

ItcmFunction_CriticalTask: input=101

ItcmFunction_CriticalTask result: 591754465

DtcmFunction_DataProcess: input=50

DtcmFunction_DataProcess result: 6560

FlashFunction_Calculate: a=2, b=12

FlashFunction_Calculate result: 1425

ItcmFunction_CriticalTask: input=102

ItcmFunction_CriticalTask result: 591754257

DtcmFunction_DataProcess: input=100

DtcmFunction_DataProcess result: 8160

FlashFunction_Calculate: a=3, b=13

FlashFunction_Calculate result: 2175

ItcmFunction_CriticalTask: input=103

ItcmFunction_CriticalTask result: 591754305

DtcmFunction_DataProcess: input=150

DtcmFunction_DataProcess result: 9760

Address verification demo completed.

2.5. Load .c file code section to the specified location

2.5.1. Custom section

Add a user-defined section in the linker script to allocate the code segment of the .c file to a

specified address, as shown in Table 2-15. Overview of .c loading to specified address

allocation, and the linker file code is shown in Table 2-16. Allocation of global variables

and global arrays to specified location in gd32h7xx_flash.ld.

Table 2-15. Overview of .c loading to specified address allocation

Module file Section name
FLASH

address

RAM

address
Description

flash_module.c .flash_module_functions 0x08020000 - Execute directly in FLASH

ram_module.c .ram_module_functions Auto allocation 0x2400D000 Copy to RAM for

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

24

Module file Section name
FLASH

address

RAM

address
Description

execution

itcm_module.c .itcm_module_functions Auto allocation 0x00002000
Copy to ITCMRAM for

execution

dtcm_module.c .dtcm_module_functions Auto allocation 0x20002000
Copy to DTCMRAM for

execution

sram0_module.c .sram0_module_functions Auto allocation 0x3000800
Copy to SRAM0 for

execution

Table 2-16. Allocation of global variables and global arrays to specified location in

gd32h7xx_flash.ld

/* user file-based function scatter loading */

.flash_module_functions ALIGN(0x08020000, 4) :

{

 . = ALIGN(4);

 __flash_module_functions_start__ = .;

 KEEP(*flash_module.o(.text))

 KEEP(*flash_module.o(.text*))

 . = ALIGN(4);

 __flash_module_functions_end__ = .;

} > FLASH

.ram_module_functions ALIGN(0x2400D000,4):

{

 . = ALIGN(4);

 __ram_module_functions_start__ = .;

 KEEP(*ram_module.o(.text))

 KEEP(*ram_module.o(.text*))

 . = ALIGN(4);

 __ram_module_functions_end__ = .;

} > AXISRAM AT> FLASH

__ram_module_functions_loadaddr__ = LOADADDR(.ram_module_functions);

.itcm_module_functions ALIGN(0x00002000,4):

{

 . = ALIGN(4);

 __itcm_module_functions_start__ = .;

 KEEP(*itcm_module.o(.text))

 KEEP(*itcm_module.o(.text*))

 . = ALIGN(4);

 __itcm_module_functions_end__ = .;

} > ITCMRAM AT> FLASH

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

25

__itcm_module_functions_loadaddr__ = LOADADDR(.itcm_module_functions);

.dtcm_module_functions ALIGN(0x20002000,4):

{

 . = ALIGN(4);

 __dtcm_module_functions_start__ = .;

 KEEP(*dtcm_module.o(.text))

 KEEP(*dtcm_module.o(.text*))

 . = ALIGN(4);

 __dtcm_module_functions_end__ = .;

} > DTCMRAM AT> FLASH

__dtcm_module_functions_loadaddr__ = LOADADDR(.dtcm_module_functions);

.sram0_module_functions ALIGN(0x30000800,4):

{

 . = ALIGN(4);

 __sram0_module_functions_start__ = .;

 KEEP(*sram0_module.o (.text))

 KEEP(*sram0_module.o(.text*))

 . = ALIGN(4);

 __sram0_module_functions_end__ = .;

} > SRAM0 AT> FLASH

__sram0_module_functions_loadaddr__ = LOADADDR(.sram0_module_functions);

2.5.2. File definition in C code

Create dtcm_module.c, flash_module.c, itcm_module.c, ram_module.c, and sram0_module.c

files along with their corresponding header files, and define respective functions in each .c

file. Details as shown in Table 2-17. Definition of .c files.

Table 2-17. Definition of .c files

/* dtcm_module.c */

int DtcmModule_Function1(int a, int b)

{

 /* Function with fast data access */

 printf("DtcmModule_Function1: a=%d, b=%d\r\n", a, b);

 dtcm_buffer[dtcm_counter % 64] = a + b;

 dtcm_counter++;

 return dtcm_buffer[(dtcm_counter - 1) % 64];

}

int DtcmModule_Function2(int x)

{

 /* Data-intensive function */

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

26

 printf("DtcmModule_Function2: x=%d\r\n", x);

 for(int i = 0; i < 32; i++) {

 dtcm_buffer[i] = x * i;

 }

 int sum = 0;

 for(int i = 0; i < 32; i++) {

 sum += dtcm_buffer[i];

 }

 return sum;

}

/* flash_module.c */

int FlashModule_Function1(int a, int b)

{

 /* Complex calculation function executed from FLASH */

 printf("FlashModule_Function1: a=%d, b=%d\r\n", a, b);

 int result = 0;

 for(int i = 0; i < 50; i++) {

 result += (a * b) + (i % 7);

 }

 return result;

}

int FlashModule_Function2(int x)

{

 /* Mathematical processing function */

 printf("FlashModule_Function2: x=%d\r\n", x);

 int temp = x;

 temp = temp * temp + 100;

 temp = temp % 1000;

 return temp;

}

/* itcm_module.c */

int ItcmModule_Function1(int a, int b)

{

 /* Ultra-fast critical function in ITCM */

 register int result = a * b;

 result = result + (result >> 4);

 result = result ^ 0x12345678;

 return result;

}

int ItcmModule_Function2(int x)

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

27

{

 /* Real-time processing function */

 register int temp = x;

 temp = (temp * 7) + 13;

 temp = temp & 0xFFFF;

 return temp;

}

/* ram_module.c */

int RamModule_Function1(int a, int b)

{

 /* Fast calculation function executed from RAM */

 printf("RamModule_Function1: a=%d, b=%d\r\n", a, b);

 register int result = a + b;

 result = result << 2;

 result = result ^ 0xAAAA;

 return result;

}

int RamModule_Function2(int x)

{

 /* High-speed processing function */

 printf("RamModule_Function2: x=%d\r\n", x);

 volatile int temp = x;

 for(int i = 0; i < 20; i++) {

 temp = (temp << 1) | (temp >> 31);

 }

 return temp;

}

/* sram0_module.c */

int Sram0Module_Function1(int a, int b)

{

 /* Function executed from SRAM0 */

 printf("Sram0Module_Function1: a=%d, b=%d\r\n", a, b);

 int result = a - b;

 if(result < 0) result = -result;

 return result * 2;

}

int Sram0Module_Function2(int x)

{

 /* Special processing function */

 printf("Sram0Module_Function2: x=%d\r\n", x);

 int temp = x;

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

28

 temp = temp + 0x1000;

 temp = temp & 0x7FFF;

 return temp;

}

2.5.3. Custom initialization implementation

Call the custom code section initialization function at system startup, as shown in Table 2-18.

Initialization implementation of .c files loaded to specified location.

Table 2-18. Initialization implementation of .c files loaded to specified location

void ModuleLoader_Init(void)

{

 uint32_t *src, *dst;

 uint32_t size;

 /* copy RAM module functions */

 src = &__ram_module_functions_loadaddr__;

 dst = &__ram_module_functions_start__;

 size = ((uint32_t)&__ram_module_functions_end__ -

(uint32_t)&__ram_module_functions_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* copy ITCM module functions */

 src = &__itcm_module_functions_loadaddr__;

 dst = &__itcm_module_functions_start__;

 size = ((uint32_t)&__itcm_module_functions_end__ -

(uint32_t)&__itcm_module_functions_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

 /* copy DTCM module functions */

 src = &__dtcm_module_functions_loadaddr__;

 dst = &__dtcm_module_functions_start__;

 size = ((uint32_t)&__dtcm_module_functions_end__ -

(uint32_t)&__dtcm_module_functions_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

29

 }

 /* copy SRAM0 module functions */

 src = &__sram0_module_functions_loadaddr__;

 dst = &__sram0_module_functions_start__;

 size = ((uint32_t)&__sram0_module_functions_end__ -

(uint32_t)&__sram0_module_functions_start__) / 4;

 for(uint32_t i = 0; i < size; i++) {

 *dst++ = *src++;

 }

}

Note: Initialization is placed before the cache initialization function.

2.5.4. Test verification

By using UART printing, test the function loading into the specified memory layout for

verification. Code as shown in Table 2-19. Verification code for .c file loaded into the

specified memory.

Table 2-19. Verification code for .c file loaded into the specified memory

void TestAllModules(void)

{

 int result;

 uint8_t test_data[16] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10};

 printf("=== Testing C File-based Module Functions ===\r\n");

 /* Test FLASH module */

 printf("\n--- Testing FLASH Module (flash_module.c) ---\r\n");

 printf("Executing FlashModule_Function1 at 0x%08X\r\n", (uint32_t)FlashModule_Function1);

 result = FlashModule_Function1(15, 25);

 printf("Result: %d\r\n", result);

 printf("Executing FlashModule_Function2 at 0x%08X\r\n", (uint32_t)FlashModule_Function2);

 result = FlashModule_Function2(100);

 printf("Result: %d\r\n", result);

 printf("Executing FlashModule_ProcessData at 0x%08X\r\n",

(uint32_t)FlashModule_ProcessData);

 FlashModule_ProcessData(test_data, 8);

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

30

 /* Test RAM module */

 printf("\n--- Testing RAM Module (ram_module.c) ---\r\n");

 printf("Executing RamModule_Function1 at 0x%08X\r\n", (uint32_t)RamModule_Function1);

 result = RamModule_Function1(10, 20);

 printf("Result: %d\r\n", result);

 printf("Executing RamModule_Function2 at 0x%08X\r\n", (uint32_t)RamModule_Function2);

 result = RamModule_Function2(0x1234);

 printf("Result: 0x%08X\r\n", result);

 printf("Executing RamModule_ProcessData at 0x%08X\r\n",

(uint32_t)RamModule_ProcessData);

 RamModule_ProcessData(test_data, 8);

 /* Test ITCM module */

 printf("\n--- Testing ITCM Module (itcm_module.c) ---\r\n");

 printf("Executing ItcmModule_Function1 at 0x%08X\r\n", (uint32_t)ItcmModule_Function1);

 result = ItcmModule_Function1(7, 11);

 printf("Result: %d\r\n", result);

 printf("Executing ItcmModule_Function2 at 0x%08X\r\n", (uint32_t)ItcmModule_Function2);

 result = ItcmModule_Function2(500);

 printf("Result: %d\r\n", result);

 printf("Executing ItcmModule_ProcessData at 0x%08X\r\n",

(uint32_t)ItcmModule_ProcessData);

 ItcmModule_ProcessData(test_data, 8);

 /* Test DTCM module */

 printf("\n--- Testing DTCM Module (dtcm_module.c) ---\r\n");

 printf("Executing DtcmModule_Function1 at 0x%08X\r\n", (uint32_t)DtcmModule_Function1);

 result = DtcmModule_Function1(33, 44);

 printf("Result: %d\r\n", result);

 printf("Executing DtcmModule_Function2 at 0x%08X\r\n", (uint32_t)DtcmModule_Function2);

 result = DtcmModule_Function2(200);

 printf("Result: %d\r\n", result);

 printf("Executing DtcmModule_ProcessData at 0x%08X\r\n",

(uint32_t)DtcmModule_ProcessData);

 DtcmModule_ProcessData(test_data, 8);

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

31

 /* Test SRAM0 module */

 printf("\n--- Testing SRAM0 Module (sram0_module.c) ---\r\n");

 printf("Executing Sram0Module_Function1 at 0x%08X\r\n", (uint32_t)Sram0Module_Function1);

 result = Sram0Module_Function1(60, 40);

 printf("Result: %d\r\n", result);

 printf("Executing Sram0Module_Function2 at 0x%08X\r\n", (uint32_t)Sram0Module_Function2);

 result = Sram0Module_Function2(0x8000);

 printf("Result: 0x%04X\r\n", result);

 printf("Executing Sram0Module_ProcessData at 0x%08X\r\n",

(uint32_t)Sram0Module_ProcessData);

 Sram0Module_ProcessData(test_data, 8);

 printf("\n==\r\n\r\n");

}

/*!

 \brief main function

 \param[in] none

 \param[out] none

 \retval none

*/

void main(void)

{

 gd_eval_com_init(EVAL_COM);

 printf("GD32H7xx C File-based Scatter Loading Example\r\n");

 printf("==\r\n");

 printf("This example demonstrates loading entire C files\r\n");

 printf("to different memory regions for optimized execution.\r\n\r\n");

 /* Initialize all modules */

 ModuleLoader_Init();

 /* Enable the CPU cache */

 cache_enable();

 mpu_config();

 /* Print all module function addresses */

 PrintModuleAddresses();

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

32

 /* Test all modules */

 TestAllModules();

 printf("All C file-based module tests completed!\r\n");

 printf("Each module file is loaded to its designated memory region.\r\n");

 uint32_t loop_count = 0;

 while(1) {

 loop_count++;

 /* Periodic address verification */

 if(loop_count % 10 == 1) {

 printf("\n=== Periodic Address Verification (Loop %d) ===\r\n", loop_count);

 printf("flash_module.c functions in FLASH:\r\n");

 printf(" FlashModule_Function1: 0x%08X\r\n", (uint32_t)FlashModule_Function1);

 printf("ram_module.c functions in AXISRAM:\r\n");

 printf(" RamModule_Function1 : 0x%08X\r\n", (uint32_t)RamModule_Function1);

 printf("itcm_module.c functions in ITCMRAM:\r\n");

 printf(" ItcmModule_Function1 : 0x%08X\r\n", (uint32_t)ItcmModule_Function1);

 printf("dtcm_module.c functions in DTCMRAM:\r\n");

 printf(" DtcmModule_Function1 : 0x%08X\r\n", (uint32_t)DtcmModule_Function1);

 printf("sram0_module.c functions in SRAM0:\r\n");

 printf(" Sram0Module_Function1: 0x%08X\r\n", (uint32_t)Sram0Module_Function1);

 printf("==\r\n\r\n");

 }

 /* Simple delay */

 for(volatile int i = 0; i < 2000000; i++);

 /* Stop after a few loops for demonstration */

 if(loop_count >= 3) {

 printf("C file-based scatter loading demonstration completed.\r\n");

 break;

 }

 }

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

33

 while(1) {

 }

}

Test log as shown in Table 2-20. Log for loading .c file into the specified memory. The

test result is consistent with the actual allocation.

Table 2-20. Log for loading .c file into the specified memory

GD32H7xx C File-based Scatter Loading Example

==

This example demonstrates loading entire C files

to different memory regions for optimized execution.

Initializing C file-based module functions...

Copying RAM module functions...

 RAM module: 0x2400D000 - 0x2400D158 (344 bytes)

Copying ITCM module functions...

 ITCM module: 0x00002000 - 0x000020E0 (224 bytes)

Copying DTCM module functions...

 DTCM module: 0x20002000 - 0x20002198 (408 bytes)

Copying SRAM0 module functions...

 SRAM0 module: 0x30000800 - 0x30000928 (296 bytes)

C file-based module functions initialization completed!

=== Module Function Entry Addresses ===

--- FLASH Module (flash_module.c) ---

Section Range: 0x08020000 - 0x08020130

FlashModule_Function1 : 0x08020001

FlashModule_Function2 : 0x08020065

FlashModule_ProcessData : 0x080200B1

FlashModule_GetProcessedValue: 0x08020115

--- RAM Module (ram_module.c) ---

FLASH Source: 0x08020130

RAM Target : 0x2400D000 - 0x2400D158

RamModule_Function1 : 0x2400D001

RamModule_Function2 : 0x2400D035

RamModule_ProcessData : 0x2400D075

RamModule_SortArray : 0x2400D11F

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

34

--- ITCM Module (itcm_module.c) ---

FLASH Source: 0x08020288

ITCM Target : 0x00002000 - 0x000020E0

ItcmModule_Function1 : 0x00002001

ItcmModule_Function2 : 0x0000202D

ItcmModule_ProcessData : 0x0000204F

ItcmModule_CriticalCalculation: 0x000020B3

--- DTCM Module (dtcm_module.c) ---

FLASH Source: 0x08020368

DTCM Target : 0x20002000 - 0x20002198

DtcmModule_Function1 : 0x20002001

DtcmModule_Function2 : 0x2000206D

DtcmModule_ProcessData : 0x200020D9

DtcmModule_GetBufferSum : 0x20002155

--- SRAM0 Module (sram0_module.c) ---

FLASH Source: 0x08020500

SRAM0 Target: 0x30000800 - 0x30000928

Sram0Module_Function1 : 0x30000801

Sram0Module_Function2 : 0x30000839

Sram0Module_ProcessData : 0x3000086D

Sram0Module_ValidateAndProcess: 0x300008F9

==

=== Testing C File-based Module Functions ===

--- Testing FLASH Module (flash_module.c) ---

Executing FlashModule_Function1 at 0x08020001

FlashModule_Function1: a=15, b=25

Result: 18897

Executing FlashModule_Function2 at 0x08020065

FlashModule_Function2: x=100

Result: 100

Executing FlashModule_ProcessData at 0x080200B1

FlashModule_ProcessData: processing 8 bytes

--- Testing RAM Module (ram_module.c) ---

Executing RamModule_Function1 at 0x2400D001

RamModule_Function1: a=10, b=20

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

35

Result: 43730

Executing RamModule_Function2 at 0x2400D035

RamModule_Function2: x=4660

Result: 0xFFFFFFFF

Executing RamModule_ProcessData at 0x2400D075

RamModule_ProcessData: processing 8 bytes

--- Testing ITCM Module (itcm_module.c) ---

Executing ItcmModule_Function1 at 0x00002001

Result: 305419817

Executing ItcmModule_Function2 at 0x0000202D

Result: 3513

Executing ItcmModule_ProcessData at 0x0000204F

--- Testing DTCM Module (dtcm_module.c) ---

Executing DtcmModule_Function1 at 0x20002001

DtcmModule_Function1: a=33, b=44

Result: 77

Executing DtcmModule_Function2 at 0x2000206D

DtcmModule_Function2: x=200

Result: 99200

Executing DtcmModule_ProcessData at 0x200020D9

DtcmModule_ProcessData: processing 8 bytes

--- Testing SRAM0 Module (sram0_module.c) ---

Executing Sram0Module_Function1 at 0x30000801

Sram0Module_Function1: a=60, b=40

Result: 40

Executing Sram0Module_Function2 at 0x30000839

Sram0Module_Function2: x=32768

Result: 0x1000

Executing Sram0Module_ProcessData at 0x3000086D

Sram0Module_ProcessData: processing 8 bytes

==

All C file-based module tests completed!

Each module file is loaded to its designated memory region.

=== Periodic Address Verification (Loop 1) ===

flash_module.c functions in FLASH:

 FlashModule_Function1: 0x08020001

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

36

ram_module.c functions in AXISRAM:

 RamModule_Function1 : 0x2400D001

itcm_module.c functions in ITCMRAM:

 ItcmModule_Function1 : 0x00002001

dtcm_module.c functions in DTCMRAM:

 DtcmModule_Function1 : 0x20002001

sram0_module.c functions in SRAM0:

 Sram0Module_Function1: 0x30000801

==

C file-based scatter loading demonstration completed.

2.6. SDRAM scatter loading implementation.

The implementation of SDRAM scatter loading can refer to sections 2.3, 2.4 and 2.5. Before

performing custom initialization, EXMC initialization and MPU configuration need to be

implemented. Code as shown in Table 2-21. SDRAM initialization code.

Table 2-21. SDRAM initialization code

#include "exmc_sdram.h"

/*!

 \brief initialize the sdram

 \param[in] none

 \param[out] none

 \retval none

*/

void DoInit(void)

{

 /* configure the clock of EXMC */

 rcu_exmc_config();

 /* configure the MPU */

 mpu_config();

 /* configure the EXMC access mode */

 exmc_synchronous_dynamic_ram_init(EXMC_SDRAM_DEVICE0);

 __IO int i,j;

 for(i=0;i<500;i++){

 for(j=0;j<5000;j++);

 }

}

Note: In the default configuration of the M7 core, certain addresses are in regions where

instruction execution is prohibited. Thus, if code is loaded into those regions, errors will occur

during execution. The SDRAM address allocation in the EXMC of GD32H7xx is 0xC0000000-

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

37

0xDFFFFFFF, which lies within this prohibited address range. Configure the MPU (Memory

Protection Unit) registers to enable instruction execution in the 0xC0000000 address range.

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

38

3. Revision history

Table 3-1. Revision history

Revision No. Description Date

1.0 Initial Release Dec.30 2025

AN311
 Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

39

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This

document, including any product of the Company described in this document (the “Product”), is owned by the Company

according to the laws of the People’s Republic of China and other applicable laws. The Company reserves all rights

under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the

Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the

property of their respective owner and referred to for identification purposes only.

To the maximum extent permitted by applicable law, the Company makes no representations or warranties of any

kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor

does the Company assume any liability arising out of the application or use of any Product. Any information provided in

this document is provided only for reference purposes. It is the sole responsibility of the user of this document to

determine whether the Product is suitable and fit for its applications and products planned, and properly design, program,

and test the functionality and safety of its applications and products planned using the Product. The Product is designed,

developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the

Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities,

atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments,

pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems

(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not

limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for

example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,

Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-

contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other

transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected

to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses").

Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company

is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or

distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.

Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its

suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims

for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to

make changes, corrections, modifications or improvements to this document and the Product described herein at any

time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from

future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2026 GigaDevice Semiconductor Inc. – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Implementation of scatter loading in Embedded Builder
	2.1. Use manually written ld file
	2.2. VMA and LMA
	2.3. Load global variables and global arrays to the specified location
	2.3.1. Custom section
	2.3.2. Variable definitions in C code
	2.3.3. Custom initialization implementation
	2.3.4. Test verification

	2.4. Load functions to the specified location
	2.4.1. Custom section
	2.4.2. Function definition in C code
	2.4.3. Custom initialization implementation
	2.4.4. Test verification

	2.5. Load .c file code section to the specified location
	2.5.1. Custom section
	2.5.2. File definition in C code
	2.5.3. Custom initialization implementation
	2.5.4. Test verification

	2.6. SDRAM scatter loading implementation.

	3. Revision history

