GigaDevice Semiconductor Inc.

Scatter Loading Instructions of GD32
Embedded Builder for Arm Cortex-M
Processor

Application Note
AN311

Revision 1.0

(Dec. 2025)

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

Table of Contents

LIz o1 (= o L O 0 T 0L (=T 01 £ 1
TSy Ao o 1= 2
LISt Of TADIES ..o 3
1. INErodUCEION e 4
2. Implementation of scatter loading in Embedded Builder.................................. 5
2.1, Use manually Written Id fil@...........uuuuimiiiiiiiiiiiii e 5
pA VN o Vo I I 5
2.3. Load global variables and global arrays to the specified locationccc....e. 6
P2 T TR O 015 (o] ¢ K== Yo (o] o PR TRR 6
2.3.2. Variable definitions in C COUEcoiuiiiiiiiiiie e e 7
2.3.3. Custom initialization implementation............ccccueei i 9
2.3.4. TeSt VENfICAtION ... et 10
2.4, Load functions to the specified l0CAtIONuuuiiiiiiiiiiiiiiiiieaee 14
241, CUSEOM SECHON ...ttt e et e e e et e e e s bt e e e s snbeeeeeaneeeeeanns 14
2.4.2. Function definition iN C COAEcooiiiiiiiiiiiiie e 15
2.4.3. Custom initialization implementation............ccoociei i 17
244, TeSt VENfICAtION ... e a e 19
2.5. Load .cfile code section to the specified l0CatioN...............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiee 23
P22 T TR O U1 (o o I Yo (o] o SR SOTRRR 23
2.5.2. File definition in C COUEoiiiiiiiiii e e e 25
2.5.3. Custom initialization implementation.............c.occiei i 28
254, TeSt VENfICAtION ... 29
2.6. SDRAM scatter loading implementation.ueuuiiiiiiiiiiiiiiiiiieeeeene 36
3. ReVISION NiSTOrY ... 38

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

List of Figures

Figure 2-1. Project directory structure in GD32 Embedded Builder...................ccccoeeeniniiinnnnn, 5

AN311
e Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

List of Tables

Table 2-1. Overview of address allocation for loading global variables and global arrays to
SPECITIEU IOCALIONSeeiiiiii s 6
Table 2-2. Allocation of global variables and global arrays to specified locations in
GA32NTXX_FIASh.IAooiiieiii et aaaa e 6
Table 2-3. Header file macro definitions for loading global variables and global arrays to
SPECITIEU OCALIONSouiiiii s 8
Table 2-4. Global variable and global array loading to specified location variable definitions ... 8
Table 2-5. Global variable and global array loading to specified location data section

initialization implementation................ooo 9
Table 2-6. Global variable and global array loading to specified location memory verification
o Yo = PRSP 10
Table 2-7. Global variable and global array loading to specified location logs.......................... 12
Table 2-8. Overview of function loading to specified addressesccoociiiiiee, 14
Table 2-9. Loading global variables and global arrays to specified locations in gd32h7xx_flash.ld
... 14
Table 2-10. Header file macro definitions for loading functions to specified locations 15
Table 2-11. Function definition and implementation for loading functions to specified locations
... 15
Table 2-12. Initialization implementation for loading functions to specified locations 18
Table 2-13. Memory verification code for loading functions to specified locations 19
Table 2-14. Load function to the specified location 10gcccocoiiiii e, 21
Table 2-15. Overview of .c loading to specified address allocationccccco o, 23
Table 2-16. Allocation of global variables and global arrays to specified location in
Lo Lo B4 0 7 0 i F- T= 4 X e P 24
Table 2-17. Definition of .C filesc..ooiiiiiiii e 25
Table 2-18. Initialization implementation of .c files loaded to specified location........................ 28
Table 2-19. Verification code for .c file loaded into the specified memoryce 29
Table 2-20. Log for loading .c file into the specified memorycocccii, 33
Table 2-21. SDRAM initialization COAe ... 36
Table 3-1. ReVISION NISTOIYooooiii e 38

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

1. Introduction

‘Id” is one of the Linkers in the GNU binutils toolset. It links various object files and library
files, redirects their data, and completes symbol resolution. Linking primarily involves four
tasks: storage allocation, symbol management, libraries, and relocation. Therefore, based on
the requirements of project code, we can modify this file to specify the storage location of the
code sections.

This application note is based on the GD32H75x series, using the GD32H759I-EVAL
development board with Embedded Builder version 1.5.18. The main implemented functions
are as follows:

Implement user-defined global variables and arrays loaded to specified locations.
Implement user-defined functions loaded to specified locations.

Implement user-specified .c files loaded to specified locations.

Load to the specified position of SDRAM to achieve the above function.

This manual is also applicable to GD32 Arm Cortex® M3/M4/M23/M33/M7 core MCU products.

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

GigaDevice
2. Implementation of scatter loading in Embedded
Builder
2.1. Use manually written Id file
This project directly uses the manually written Id file. In Embedded Builder, double-click the
gd32h7xx_flash.ld file under "Window->Show View->Project Explorer->Idscripts". The project
directory structure is shown in Figure 2-1. Project directory structure in GD32 Embedded
Builder, as illustrated in the project directory structure of Embedded Builder. Alternatively,
user can open and edit it in the directory ".\ldscripts\gd32h7xx_flash.ld".
Figure 2-1. Project directory structure in GD32 Embedded Builder
55 Project Explorer = 8
==
v =% H759
» ?;;*;P Binaries
» [npt! Includes
» = Firmware
¥ = gcc_startup
> (= GD ARM MCU Debug
> = inc
~ = |dscripts
= gd32h7xx_flash.ld
» = openocd_gdlink
¥ = srC
= debug log.td
2.2. VMA and LMA

In the linker script, VMA and LMA are two core concepts used to control the distribution of
program sections in memory. VMA (Virtual Memory Address) is the memory address where a
section resides during program execution, also known as the runtime address. LMA (Load
Memory Address) is the physical address where a section is stored during programming, also
known as the load address. To implement scatter loading functionality, it is essential to
understand the core concepts of VMA and LMA. For a detailed introduction to VMA and LMA,
refer to "AN200 GD32 Embedded Builder Linker Script File Introduction".

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

GigaDevice

2.3. Load global variables and global arrays to the specified
location

2.3.1. Custom section

Add user-defined sections in the linker script to allocate different types of data to specified
addresses, as shown in Table 2-1. Overview of address allocation for loading global

variables and global arrays to specified locations. The linker file code is as shown in Table

2-2. Allocation of global variables and global arrays to specified locations in
gd32h7xx flash.Id.

Table 2-1. Overview of address allocation for loading global variables and global arrays
to specified locations

Segment type Section name FLASH address RAM address Description
Initialize Variable with an
.data.user_vars 0x08008000 0x24008000
variables initial value
Array with an initial
Initialize array .data.user_arrays 0x08009000 0x24009000 |
value
Uninitialized Zero-initialized
.bss.user_vars - 0x2400A000
variables variables
Uninitialized Zero-initialized
.bss.user_arrays - 0x2400B000
array array
.rodata.user_const_ar
Constant array 0x08007000 - Const array

rays

Table 2-2. Allocation of global variables and global arrays to specified locations in
gd32h7xx_flash.ld

/* user initializes variable section */

.user_global_vars ALIGN(0x24008000, 4) : AT(ALIGN(0x08008000, 4))

{

. = ALIGN(4);
__user_global_vars_start__ = ;
KEEP(*(.data.user_vars))
. = ALIGN(4);
__user_global_vars_end__ =
__user_global_vars_size_ = __user_global_vars_end__ - __user_global_vars_start_;
}
__user_global_vars_loadaddr__ = LOADADDR(.user_global_vars);
/* user initializes array section */
.user_global_arrays ALIGN(0x24009000, 4) : AT(ALIGN(0x08009000, 4))

{

AN311
c Scatter Loading Instructions of GD32 Embe

GigaDevice

.= ALIGN(4);

dded Builder for Arm
Cortex-M Processor

.= ALIGN(4);

}

{
.= ALIGN(4);

.= ALIGN(4);

}

{
.= ALIGN(4);

.= ALIGN(4);

}

[* user constant array section */

{
.= ALIGN(4);

. =ALIGN(4);
__user_const_arrays_end__

__user_const_arrays_size___
} > FLASH

__user_global_arrays_start__ = ;
KEEP(*(.data.user_arrays))

__user_global_arrays_end__ = ;

__user_global_arrays_size_ =

__user_global_arrays_loadaddr___

/* user uninitialized variable section */

.user_uninit_vars ALIGN(0x2400A000, 4) (NOLOAD) :

__user_uninit_vars_start__ = ;

KEEP(*(.bss.user_vars))

__user_uninit_vars_end__ = ;

__user_uninit_vars_size__ =
/* user uninitialized array section */

.user_uninit_arrays ALIGN(0x2400B000, 4) (NOLOAD) :

__user_uninit_arrays_start__ = ;

KEEP(*(.bss.user_arrays))
__user_uninit_arrays_end__ = ;
__user_uninit_arrays_size__ =

.user_const_arrays ALIGN(0x08007000, 4) :

__user_const_arrays_start__ = ;

KEEP(*(.rodata.user_const_:

__user_global_arrays_end__ - ___user_global_arrays_start__;

LOADADDR(.user_global_arrays);

__user_uninit_vars_end__ - __user_uninit_vars_start__;

__user_uninit_arrays_end__ - __user_uninit_arrays_start__;

arrays))

B

__user_const_arrays_end___ - __user_const_arrays_start__;

2.3.2.

Define section attribute macros

Variable definitions in C code

in the header file to improve code readability, as shown in

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

Table 2-3. Header file macro definitions for loading global variables and global arrays

to specified locations.

Table 2-3. Header file macro definitions for loading global variables and global arrays
to specified locations
/* initialized data section attributes - will be loaded from FLASH to RAM */

#define USER_INIT_VAR __attribute__((section(".data.user_vars")))
#define USER_INIT_ARRAY __attribute__((section(".data.user_arrays")))
/* uninitialized data section attributes - only in RAM, cleared at startup */
#define USER_UNINIT_VAR __attribute__((section(".bss.user_vars")))

#define USER_UNINIT_ARRAY __ attribute__((section(".bss.user_arrays")))

#define USER_CONST_ARRAY __ attribute_ ((section(".rodata.user_const_arrays")))

Variable definitions are illustrated in Table 2-4. Global variable and global array loading to

specified location variable definitions.

Table 2-4. Global variable and global array loading to specified location variable
definitions

/* user initialized global variables definition - will be placed in .data.user_vars section */
USER_INIT_VAR int32_t system_status = 1;

USER_INIT_VAR uint32_t device_serial = 0x12345678;

USER_INIT_VAR uint16_t firmware_version = 0x0102;

USER_INIT_VAR uint8_t system_config = 0xAB;

I* user initialized global arrays definition - will be placed in .data.user_arrays section */
USER_INIT_ARRAY uint16_t calibration_data[10] = {
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

h

USER_INIT_ARRAY uint8_t device_info[32] = {
'G"'D"'3','2"'HI"7','XI"X',‘ l,lDl,lel,IVI’IiI’lCl’IeI’O
h

I* User uninitialized global variables definition - will be placed in .bss.user_vars section */
USER_UNINIT_VAR volatile uint32_t tick_counter;

USER_UNINIT_VAR volatile uint16_t error_code;

USER_UNINIT_VAR volatile uint8_t system_state;

USER_UNINIT_VAR uint32_t runtime_config;

I* User uninitialized global arrays definition - will be placed in .bss.user_arrays section */
USER_UNINIT_ARRAY uint8_t uart_tx_buffer[512];
USER_UNINIT_ARRAY uint8_t uart_rx_buffer[512];

USER_UNINIT_ARRAY uint16_t adc_samples[256];

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

GigaDevice
USER_UNINIT_ARRAY char log_buffer{1024];
/* Const array definition */
USER_CONST_ARRAY const uint16_t lookup_table[256] = {
0x0000, 0x0001, 0x0004, 0x0009,
2
2.3.3. Custom initialization implementation

Call the custom section initialization function at system startup, as shown in Table 2-5. Global
variable _and global array loading to specified location data section initialization

implementation.

Table 2-5. Global variable and global array loading to specified location data section
initialization implementation

/* Data initialization function implementation */
void UserData_Init(void)
{
uint32_t *src, *dst;
uint32_t size;
/* 1. Initialize user global variables segment - copy from FLASH to RAM */
src = & _user_global_vars_loadaddr__;
dst =& user_global_vars_start__;

size = ((uint32_t)& user_global_vars_end__ - (uint32_t)&__user_global_vars_start)/ 4;

for(uint32_t i = 0; i < size; i++) {

*dst++ = *src++;

[* 2. Initialize user global arrays segment - copy from FLASH to RAM */
src = & _user_global_arrays_loadaddr__;
dst =& user_global_arrays_start__;

size = ((uint32_t)& _user_global_arrays_end__ - (uint32_t)&__user_global_arrays_start)/ 4;

for(uint32_ti=0;i < size; i++) {
*dst++ = *src++,
}
[* 3. Clear user uninitialized variables segment */
dst = &__user_uninit_vars_start__;

size = ((uint32_t)& _user_uninit_vars_end__ - (uint32_t)&__user_uninit_vars_start__)/ 4;

for(uint32_ti=0;i < size; i++) {

*dst++ = 0;

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

GigaDevice
}
[* 4. Clear user uninitialized arrays segment */
dst = & _user_uninit_arrays_start__;
size = ((uint32_t)& _user_uninit_arrays_end__ - (uint32_t)&__user_uninit_arrays_start_)/ 4;
for(uint32_t i = 0; i < size; i++) {
*dst++ = 0;
}
}
Note:
1. |Initialization should be placed before the cache initialization function.
2. Constant arrays do not require initialization operations.
2.3.4. Test verification

Verify global variable and global array loading to specified location memory layout through
UART printing. Code is shown in Table 2-6. Global variable and global array loading to
specified location memory verification code.

Table 2-6. Global variable and global array loading to specified location memory
verification code

void UserData_PrintMemoryInfo(void)

{

printf("=== User-defined Memory Segments Information ===\r\n");

printf("1. Initialized variables segment:\r\n");
printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

(uint32_t)& _user_global_vars_start__,

(uint32_t)& _user_global_vars_end__,

(uint32_t)& _user_global_vars_end__ - (uint32_t)&__user_global_vars_start_);
printf(" FLASH source: 0x%08X\r\n", (uint32_t)&__user_global_vars_loadaddr__);

printf("2. Initialized arrays segment:\r\n");
printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

(uint32_t)& _user_global_arrays_start__,

(uint32_t)& _user_global_arrays_end__,

(uint32_t)& user_global_arrays_end__ - (uint32_t)&___user_global_arrays_start_);
printf(" FLASH source: 0x%08X\r\n", (uint32_t)&__user_global_arrays_loadaddr__);

printf("3. Uninitialized variables segment:\r\n");
printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",

(uint32_t)&__user_uninit_vars_start__,

10

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

(uint32_t)&__user_uninit_vars_end__,

(uint32_t)&__user_uninit_vars_end__ - (uint32_t)&__user_uninit_vars_start__);

printf("4. Uninitialized arrays segment:\r\n");
printf(" RAM address: 0x%08X - 0x%08X (%d bytes)\r\n",
(uint32_t)&__user_uninit_arrays_start__,
(uint32_t)&__user_uninit_arrays_end__,
(uint32_t)&__user_uninit_arrays_end__ - (uint32_t)&__user_uninit_arrays_start__);
printf("5. Constant arrays segment:\r\n");
printf(" FLASH address: 0x%08X - 0x%08X (%d bytes)\r\n",
(uint32_t)&__user_const_arrays_start__,
(uint32_t)&_ _user_const_arrays_end__,

(uint32_t)& _user_const_arrays_end__ - (uint32_t)&__user_const_arrays_start__);

printf(" == \r\n\r\n™");

int main(void)
{
gd_eval_com_init(EVAL_COM);
[*system initialization */
printf("GD32H7xx User-defined Data Segment Example\r\n");
printf(" ==== m======\rn")

[* initialize user data segment */
UserData_Init();

[* enable the CPU cache */
cache_enable();

mpu_config();

[* print memory information */

UserData_PrintMemorylInfo();

[* verify initialization data */

printf("=== Verify Initialization Data ===\r\n");

printf("system_status = %d (addr: 0x%08X)\r\n", system_status, (uint32_t)&system_status);

printf("device_serial = 0x%08X (addr: 0x%08X)\r\n", device_serial, (uint32_t)&device_serial);

printf("calibration_data[0] = %d (addr: 0x%08X)\r\n", calibration_data[0],
(uint32_t)&calibration_data[0]);

printf("calibration_data[9] = %d (addr: 0x%08X)\r\n", calibration_data[9],
(uint32_t)&calibration_data[9]);

printf("calibration_data array base addr: 0x%08X\r\n", (uint32_t)calibration_data);

printf("device_info = %s (addr: 0x%08X)\r\n", (char*)device_info, (uint32_t)device_info);

11

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

[* verify const array */

printf("lookup_table[0] = 0x%04X (addr: 0x%08X)\r\n", lookup_table[0],
(uint32_t)&lookup_table[0]);
printf("lookup_table[255] = 0x%04X (addr: 0x%08X)\r\n", lookup_table[255],

(uint32_t)&lookup_table[255]);
printf("lookup_table array base addr: 0x%08X\r\n", (uint32_t)lookup_table);

[* test uninitialized data usage */

printf("\r\n=== Test Uninitialized Data Usage ===\r\n");

[* buffer filling test */
for(inti=0;i<10;i++){
uart_tx_buffer[i] =i + 0x30; //'0'to'9’
adc_samples[i] =i * 100;
}
uart_tx_buffer[10] = "\0';

printf("uart_tx_buffer = %s (addr: 0x%08X)\r\n", (char*)uart_tx_buffer, (uint32_t)uart_tx_buffer);
printf("adc_samples[5] = %d (addr: 0x%08X)\r\n", adc_samples[5], (uint32_t)&adc_samples[5]);
printf("adc_samples array base addr: 0x%08X\r\n", (uint32_t)adc_samples);

printf("\r\n=== System Ready ===\r\n");
printf("User-defined data segments test completed successfully'\r\n");

/* main loop - simple endless loop */
while(1) {
}

Test print logs are shown in Table 2-7. Global variable and global array loading to
specified location logs, with test results consistent with actual allocation.

Table 2-7. Global variable and global array loading to specified location logs

GD32H7xx User-defined Data Segment Example

Starting initialization of user-defined data segments...
Initializing user global variables segment...

Address range: 0x24008000 - 0x2400800C

Data size: 12 bytes
Initializing user global arrays segment...

Address range: 0x24009000 - 0x24009034

Data size: 52 bytes

12

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311
dded Builder for Arm
Cortex-M Processor

Clearing user uninitialized variables segment...
Address range: 0x2400A000 - 0x2400A00C
Data size: 12 bytes

Clearing user uninitialized arrays segment...
Address range: 0x2400B000 - 0x2400BAQ0
Data size: 2560 bytes

User data segments initialization completed!

=== User-defined Memory Segments Information ===
1. Initialized variables segment:
RAM address: 0x24008000 - 0x2400800C (12 bytes)
FLASH source: 0x08008000
2. Initialized arrays segment:
RAM address: 0x24009000 - 0x24009034 (52 bytes)
FLASH source: 0x08009000
3. Uninitialized variables segment:
RAM address: 0x2400A000 - 0x2400A00C (12 bytes)
4. Uninitialized arrays segment:
RAM address: 0x2400B000 - 0x2400BA00 (2560 bytes)
5. Constant arrays segment:
FLASH address: 0x0800A000 - 0x0800A200 (512 bytes)

=== Verify Initialization Data ===

system_status = 1 (addr: 0x24008000)

device_serial = 0x12345678 (addr: 0x24008004)
calibration_data[0] = 100 (addr: 0x24009000)
calibration_data[9] = 1000 (addr: 0x24009012)
calibration_data array base addr: 0x24009000
device_info = GD32H7xx Device (addr: 0x24009014)
lookup_table[0] = 0xA55A (addr: 0x0800A000)
lookup_table[255] = 0x0000 (addr: 0x0800A0FE)
lookup_table array base addr: 0x0800A000

=== Test Uninitialized Data Usage ===
uart_tx_buffer = 0123456789 (addr: 0x2400B000)
adc_samples[5] = 500 (addr: 0x2400B40A)
adc_samples array base addr: 0x2400B400

=== System Ready ===
User-defined data segments test completed successfully!

13

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

GigaDevice
2.4. Load functions to the specified location
2.4.1. Custom section

Add user-defined sections in the linker script to allocate functions to specific addresses, with
address allocation as shown in Table 2-8. Overview of function loading to specified
addresses, with linker file code shown in Table 2-9. Loading global variables and global
arrays to specified locations in gd32h7xx flash.Id.

Table 2-8. Overview of function loading to specified addresses

Segment type Section name FLASH address| RAM address Description
FLASH]]]
. text.flash_functions | 0x08010000 - Execute directly in FLASH
function

RAM function | .text.ram_functions | Auto allocation | 0x2400C000 | Copy to RAM for execution

Copy to ITCMRAM for
execution

Copy to DTCMRAM for

execution

ITCM function | .text.itcm_functions | Auto allocation | 0x00001000

DTCM function| .text.dtcm_functions | Auto allocation | 0x20001000

Table 2-9. Loading global variables and global arrays to specified locations in
gd32h7xx_flash.ld

/* User custom function scatter loading */
.user_flash_functions 0x08010000 :

{

. = ALIGN(4);
__user_flash_functions_start = .;
KEEP((*(.text.flash_functions))

. = ALIGN(4);
__user_flash_functions_end__ = ;
__user_flash_functions_size = _user _flash_functions_end__ - user_flash_functions_start _;
} > FLASH

.user_ram_functions 0x2400C000 :
{

. = ALIGN(4);
__user_ram_functions_start__ = ;
KEEP(*(.text.ram_functions))

.= ALIGN(4);

__user_ram_functions_end__ = ;

__user_ram_functions_size_ = __user_ram_functions_end__ - __user_ram_functions_start__;
} > AXISRAM AT> FLASH
__user_ram_functions_loadaddr__ = LOADADDR(.user_ram_functions);

14

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

2.4.2.

.user_itcm_functions 0x00001000 :
{

. = ALIGN(4);
__user_itcm_functions_start__ = _;
KEEP(*(.text.itcm_functions))

. = ALIGN(4);
__user_itcm_functions_end__ = .;
__user_itcm_functions_size__ = __user_itcm_functions_end__ - __user_itcm_functions_start__;
} > ITCMRAM AT> FLASH

__user_item_functions_loadaddr__ = LOADADDR(.user_itcm_functions);

.user_dtcm_functions 0x20001000 :
{

. = ALIGN(4);
__user_dtcm_functions_start__ = ;
KEEP(*(.text.dtcm_functions))

. = ALIGN(4);
__user_dtcm_functions_end__ = ;
__user_dtcm_functions_size__ = ___user_dtcm_functions_end___ - __user_dtcm_functions_start__;
} > DTCMRAM AT> FLASH

__user_dtcm_functions_loadaddr__ = LOADADDR(.user_dtcm_functions);

Function definition in C code

Define section attribute macros in the header file to improve code readability, as shown in
Table 2-10. Header file macro definitions for loading functions to specified locations.

Table 2-10. Header file macro definitions for loading functions to specified locations

/* Function section attributes */

#define FLASH_FUNCTION __attribute__ ((section(".text.flash_functions")))
#define RAM_FUNCTION __attribute__ ((section(".text.ram_functions")))
#define ITCM_FUNCTION __attribute__ ((section(".text.itcm_functions")))
#define DTCM_FUNCTION __attribute__ ((section(".text.dtcm_functions")))

Variable definition example as shown in Table 2-11. Function definition and
implementation for loading functions to specified locations.

Table 2-11. Function definition and implementation for loading functions to specified
locations

FLASH_FUNCTION int FlashFunction_Calculate(int a, int b)

{
printf("FlashFunction_Calculate: a=%d, b=%d\r\n", a, b);

int result = 0;

15

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

for(inti=0; i< 50; i++) {
result += (a* b) + (i % 10);
}
printf("FlashFunction_Calculate result: %d\r\n", result);

return result;

FLASH_FUNCTION void FlashFunction_ProcessData(uint8_t* data, uint32_t len)

{
printf("FlashFunction_ProcessData: processing %d bytes\r\in", len);
for(uint32_t i =0; i <len; i++) {
data[i] = data[i] » Ox5A;
}
printf("Data processing completed\r\n®);
}

RAM_FUNCTION int RamFunction_FastProcess(int data)

{
[lprintf("RamFunction_FastProcess: input=0x%08X\r\n", data);
volatile int temp = data;
temp = (temp << 1) » OXA5AS5;
temp = (temp >> 1) | 0OX5A5A0000;
[llprintf("RamFunction_FastProcess result: 0x%08X\r\n", temp);

return temp;

RAM_FUNCTION void RamFunction_ProcessBuffer(uint16_t* buffer, uint32_t size)

{
printf("RamFunction_ProcessBuffer: processing %d elements\r\n", size);
for(uint32_t i = 0; i < size; i++) {
buffer[i] = (buffer[i] << 1) | (buffer[i] >> 15);
}
printf("Buffer processing completed\rin");
}

ITCM_FUNCTION int ItcmFunction_CriticalTask(int input)
{
printf("ltcmFunction_CriticalTask: input=%d\r\n", input);
register int result = input;
result = (result * 3) + 7;
result = result » 0x12345678;

result = (result << 4) | (result >> 28);

16

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

printf("ltcmFunction_CriticalTask result: %d\r\n", result);

return result;

ITCM_FUNCTION uint32_t ItcmFunction_BitOperation(uint32_t value)

{
printf("ltcmFunction_BitOperation: input=0x%08X\r\n", value);
uint32_t result = value;
result = ~result;
result = (result & OXAAAAAAAA) | ((result & 0x55555555) << 1);
result = (result & OXCCCCCCCC) | ((result & 0x33333333) << 2);
printf("ltcmFunction_BitOperation result: 0x%08X\r\n", result);
return result;

}

DTCM_FUNCTION int DtcmFunction_DataProcess(int value)
{
printf("DtcmFunction_DataProcess: input=%d\r\n", value);
static int buffer[32];
for(inti=0;i<32;i++) {
buffer[i] = value + (i * 10);
}
int sum = 0;
for(inti=0;i<32;i++) {
sum += buffer[i];
}
printf("DtcmFunction_DataProcess result: %d\r\n", sum);

return sum,;

DTCM_FUNCTION void DtcmFunction_ArrayOperation(uint32_t* array, uint32_t count)

{
printf("DtcmFunction_ArrayOperation: processing %d elements\r\n”, count);
for(uint32_t i = 0; i < count; i++) {

arrayli] = array[i] * 2 + 1;

}
printf("Array operation completed\r\n");

}

2.4.3. Custom initialization implementation

Call the custom code section initialization function during system startup, as shown in Table

17

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311
dded Builder for Arm
Cortex-M Processor

2-12. Initialization implementation for loading functions to specified locations.

Table 2-12. Initialization implementation for loading functions to specified locations

{

1 4;

}

void UserFunctions_Init(void)

uint32_t *src, *dst;

uint32_t size;

/* Copy RAM functions */
src = &__user_ram_functions_loadaddr__;
dst =& user_ram_functions_start__;

size = ((uint32_t)&__user_ram_functions_end__ - (uint32_t)& _user_ram_functions_start_) /

for(uint32_t i = 0; i < size; i++) {
*dst++ = *src++;
}
/* Copy ITCM functions */
src =& __user_itcm_functions_loadaddr__;
dst =& user_itcm_functions_start__;

size = ((uint32_t)& _user_itcm_functions_end__ - (uint32_t)& user_itcm_functions_start_) /

for(uint32_ti=0;i < size; i++) {

*dst++ = *src++;

/* Copy DTCM functions */
printf("Copying DTCM functions...\r\n");
src = & __user_dtcm_functions_loadaddr__;

dst =& user_dtcm_functions_start ;

size = ((uint32_t)& user_dtcm_functions_end__ - (uint32_t)&__user_dtcm_functions_start_)

for(uint32_ti=0;i < size; i++) {

*dst++ = *src++;

Note: Initialization is placed before the cache initialization function.

18

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311

dded Builder for Arm
Cortex-M Processor

2.4.4.

Test verification

Test the memory layout verification of loading functions to specified locations through UART

printing, with the code shown in Table 2-13. Memory verification code for loading

functions to specified locations.

Table 2-13. Memory verification code for loading functions to specified locations

void TestUserFunctions(void)

{
printf("=== Testing User Functions ===\r\n");
uint8_t test_data[16] = {Ox01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

0x09, 0x0A, 0x0B, 0x0C, 0x0D, OxOE, 0xOF, 0x10};

uint16_t test_buffer[8] = {100, 200, 300, 400, 500, 600, 700, 800};
uint32_t test_array[5] = {10, 20, 30, 40, 50};
printf("\n--- Testing FLASH Functions ---\r\n");
FlashFunction_Calculate(15, 25);
FlashFunction_ProcessData(test_data, 8);
printf("\n--- Testing RAM Functions ---\r\n");
RamFunction_FastProcess(0x12345678);
RamFunction_ProcessBuffer(test_buffer, 8);
printf("\n--- Testing ITCM Functions ---\r\n");
ltcmFunction_CriticalTask(42);
ItcmFunction_BitOperation(0xAAAA5555);
printf("\n--- Testing DTCM Functions ---\r\n");
DtcmFunction_DataProcess(100);
DtcmFunction_ArrayOperation(test_array, 5);
printf("\n \r\n\r\n");

}

/*]
\brief main function
\param[in] none
\param[out] none
\retval none

*/

void main(void)

19

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

gd_eval_com_init(EVAL_COM);
printf("GD32H7xx User Functions Address Test\r\n");
printf(" ==== \r\nu);

[* initialize user functions */
UserFunctions_Init();

[* enable the CPU cache */
cache_enable();

mpu_config();

[* print all function addresses */
PrintFunctionAddresses();
[* test all functions */

TestUserFunctions();

printf("All function tests completed!\r\n");

printf("Function address verification complete.\r\n\r\n");

/* main application loop with periodic address display */

uint32_t counter = 0;

while(1) {

counter++;

if(counter % 5 == 1) {

/* periodically show function addresses */

printf("=== Periodic Address Check %d ===\r\n", counter);

printf("FlashFunction_Calculate: 0x%08X\r\n", (uint32_t)FlashFunction_Calculate);

printf("RamFunction_FastProcess: 0x%08X\r\n",
(uint32_t)RamFunction_FastProcess);

printf("ltcmFunction_CriticalTask: 0x%08X\r\n", (uint32_t)ltcmFunction_CriticalTask);

printf("DtcmFunction_DataProcess: 0x%08X\r\n",
(uint32_t)DtcmFunction_DataProcess);

printf("== ===\r\n\r\n");

[* call functions to verify they work at reported addresses */
FlashFunction_Calculate(counter, counter + 10);
RamFunction_FastProcess(counter * 0x1000);
IltcmFunction_CriticalTask(counter + 100);
DtcmFunction_DataProcess(counter * 50);

20

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311
dded Builder for Arm
Cortex-M Processor

[* delay between iterations */
for(volatile int i = 0; i < 2000000; i++);

[* stop after several iterations */
if(counter >= 3) {

printf("Address verification demo completed.\r\n");

break;
}
}
while(1) {
}

}

Test print log as shown in Table 2-14. Load function to the specified location log, test

results are consistent with the actual allocation.

Table 2-14. Load function to the specified location log

GD32H7xx User Functions Address Test

Initializing user functions...
Copying RAM functions...

RAM functions: 0x2400C000 - 0x2400C0BO0 (176 bytes)
Copying ITCM functions...

ITCM functions: 0x00001000 - 0x000010A0 (160 bytes)
Copying DTCM functions...

DTCM functions: 0x20001000 - 0x200010EQ (224 bytes)

User functions initialization completed!

=== Function Entry Addresses ===

--- FLASH Functions (Direct Execution) ---
Section Range: 0x08010000 - 0x080100C4
FlashFunction_Calculate : 0x08010001
FlashFunction_ProcessData : 0x08010071

--- RAM Functions (Copied from FLASH) ---
FLASH Source: 0x080100C4

RAM Target : 0x2400C000 - 0x2400C0B0
RamFunction_FastProcess : 0x2400C001
RamFunction_ProcessBuffer : 0x2400C035

21

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311
dded Builder for Arm
Cortex-M Processor

--- ITCM Functions ---

FLASH Source: 0x08010174

ITCM Target : 0x00001000 - 0x000010A0
ItcmFunction_CriticalTask : 0x00001001
ItcmFunction_BitOperation : 0x00001049

--- DTCM Functions ---

FLASH Source: 0x08010214

DTCM Target : 0x20001000 - 0x200010EOQ
DtcmFunction_DataProcess : 0x20001001
DtcmFunction_ArrayOperation : 0x2000107D

=== Testing User Functions ===

--- Testing FLASH Functions ---
FlashFunction_Calculate: a=15, b=25
FlashFunction_Calculate result: 18975
FlashFunction_ProcessData: processing 8 bytes
Data processing completed

--- Testing RAM Functions ---
RamFunction_ProcessBuffer: processing 8 elements
Buffer processing completed

--- Testing ITCM Functions ---
ItcmFunction_CriticalTask: input=42
ItcmFunction_CriticalTask result: 591753169
ItcmFunction_BitOperation: input=0xAAAA5555
ItcmFunction_BitOperation result: 0x88888888

--- Testing DTCM Functions ---
DtcmFunction_DataProcess: input=100
DtcmFunction_DataProcess result: 8160

DtcmFunction_ArrayOperation: processing 5 elements

Array operation completed

All function tests completed!
Function address verification complete.

22

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

2.5.

2.5.1.

=== Periodic Address Check 1 ===
FlashFunction_Calculate: 0x08010001
RamFunction_FastProcess: 0x2400C001
ItcmFunction_CriticalTask: 0x00001001
DtcmFunction_DataProcess: 0x20001001

FlashFunction_Calculate: a=1, b=11
FlashFunction_Calculate result: 775
ItcmFunction_CriticalTask: input=101
ItcmFunction_CriticalTask result: 591754465
DtcmFunction_DataProcess: input=50
DtcmFunction_DataProcess result: 6560
FlashFunction_Calculate: a=2, b=12
FlashFunction_Calculate result: 1425
ItcmFunction_CriticalTask: input=102
ItcmFunction_CriticalTask result: 591754257
DtcmFunction_DataProcess: input=100
DtcmFunction_DataProcess result: 8160
FlashFunction_Calculate: a=3, b=13
FlashFunction_Calculate result: 2175
ItcmFunction_CriticalTask: input=103
ItcmFunction_CriticalTask result: 591754305
DtcmFunction_DataProcess: input=150

DtcmFunction_DataProcess result: 9760

Address verification demo completed.

Load .c file code section to the specified location

Custom section

Add a user-defined section in the linker script to allocate the code segment of the .c file to a
specified address, as shown in Table 2-15. Overview of .c loading to specified address

allocation, and the linker file code is shown in Table 2-16. Allocation of global variables
and global arrays to specified location in gd32h7xx flash.Id.

Table 2-15. Overview of .c loading to specified address allocation

FLASH RAM .
Module file Section name Description
address address
flash_module.c | .flash_module_functions | 0x08020000 - Execute directly in FLASH
ram_module.c | .ram_module_functions |Auto allocation | 0x2400D000 Copy to RAM for

23

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

FLASH RAM
Module file Section name Description
address address
execution
Copy to ITCMRAM for
ittm_module.c | .itcm_module_functions |Auto allocation | 0x00002000 .
execution
Copy to DTCMRAM for
dtcm_module.c | .dtcm_module_functions | Auto allocation | 0x20002000 .
execution
Copy to SRAMO for
sram0_module.c |.sram0_module_functions|Auto allocation| 0x3000800 .
execution

Table 2-16. Allocation of global variables and global arrays to specified location in
gd32h7xx_flash.ld
* user file-based function scatter loading */

flash_module_functions ALIGN(0x08020000, 4) :
{

.= ALIGN(4);

__flash_module_functions_start__ = ;

KEEP(*flash_module.o(.text))

KEEP(*flash_module.o(.text*))

.= ALIGN(4);

__flash_module_functions_end__ = ;
} > FLASH

.ram_module_functions ALIGN(0x2400D000,4):
{
.= ALIGN(4);
__ram_module_functions_start = ;
KEEP(*ram_module.o(.text))
KEEP(*ram_module.o(.text*))
.= ALIGN(4);
__ram_module_functions_end__ = ;
} > AXISRAM AT> FLASH
__ram_module_functions_loadaddr__ = LOADADDR(.ram_module_functions);

.itcm_module_functions ALIGN(0x00002000,4):

{
. = ALIGN(4);
__itcm_module_functions_start__ = ;
KEEP(*ittm_module.o(.text))
KEEP(*itcm_module.o(.text*))
. = ALIGN(4);
__itcm_module_functions_end__ = ;

} > ITCMRAM AT> FLASH

24

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

2.5.2.

__item_module_functions_loadaddr__ = LOADADDR(.ittm_module_functions);

.dtcm_module_functions ALIGN(0x20002000,4):
{
.= ALIGN(4);
__dtcm_module_functions_start__ = .;
KEEP(*dtcm_module.o(.text))
KEEP(*dtcm_module.o(.text*))
.= ALIGN(4);
__dtcm_module_functions_end__ = ;
} > DTCMRAM AT> FLASH
__dtem_module_functions_loadaddr__ = LOADADDR(.dtcm_module_functions);

.sram0_module_functions ALIGN(0x30000800,4):
{
.= ALIGN(4);
__sramO_module_functions_start__ = ;
KEEP(*sram0O_module.o (.text))
KEEP(*sram0O_module.o(.text*))
.= ALIGN(4);
__sramO_module_functions_end__ = ;
} > SRAMO AT> FLASH
__sram0_module_functions_loadaddr__ = LOADADDR(.sram0_module_functions);

File definition in C code

Create dtcm_module.c, flash_module.c, itcm_module.c, ram_module.c, and sram0_module.c
files along with their corresponding header files, and define respective functions in each .c
file. Details as shown in Table 2-17. Definition of .c files.

Table 2-17. Definition of .c files

/* dtcm_module.c */

int DtcmModule_Function1(int a, int b)

{
/* Function with fast data access */
printf("DtcmModule_Function1: a=%d, b=%d\r\n", a, b);
dtcm_buffer[dtcm_counter % 64] = a + b;
dtcm_counter++;
return dtcm_buffer[(dtcm_counter - 1) % 64];

}

int DtcmModule_Function2(int x)

{
/* Data-intensive function */

25

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311
dded Builder for Arm
Cortex-M Processor

printf("DtcmModule_Function2: x=%d\r\n", x);
for(inti=0;i<32;i++){
dtcm_buffer[i] = x * i;
}
int sum =0;
for(inti=0;i<32;i++){
sum += dtcm_buffer]i];
}
return sum;
}
/* flash_module.c */
int FlashModule_Function1(int a, int b)
{
[* Complex calculation function executed from FLASH */
printf("FlashModule_Function1: a=%d, b=%d\r\n", a, b);
int result = 0;
for(inti=0; i< 50; i++) {
result+=(@*b)+ (i % 7);
}

return result;

int FlashModule_Function2(int x)

{
[* Mathematical processing function */
printf("FlashModule_Function2: x=%d\r\n", x);
int temp = x;
temp = temp * temp + 100;
temp = temp % 1000;
return temp;

}

* item_module.c */

int ltcmModule_Function1(int a, int b)

{
[* Ultra-fast critical function in ITCM */
register int result = a * b;
result = result + (result >> 4);
result = result * 0x12345678;
return result;
}

int ltcmModule_Function2(int x)

26

c Scatter Loading Instructions of GD32 Embe

AN311
dded Builder for Arm
Cortex-M Processor

GigaDevice

{
/* Real-time processing function */
register int temp = x;
temp = (temp * 7) + 13;
temp = temp & OXFFFF;
return temp;

}

/* ram_module.c */

int RamModule_Function1(int a, int b)

{
[* Fast calculation function executed from RAM */
printf("RamModule_Function1: a=%d, b=%d\r\n", a, b);
register int result = a + b;
result = result << 2;
result = result » OXAAAA;

return result;

int RamModule_Function2(int x)

{
/* High-speed processing function */
printf("RamModule_Function2: x=%d\r\n", x);
volatile int temp = x;
for(inti = 0; i< 20;i++){
temp = (temp << 1) | (temp >> 31);
}
return temp;
}

/* sramO_module.c */

int SramOModule_Function1(int a, int b)

{
[* Function executed from SRAMO */
printf("SramOModule_Function1: a=%d, b=%d\r\n", a, b);
int result = a - b;
if(result < 0) result = -result;
return result * 2;

}

int SramOModule_Function2(int x)

{

[* Special processing function */
printf("SramOModule_Function2: x=%d\r\n", x);

int temp = x;

27

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

GigaDevice
temp = temp + 0x1000;
temp = temp & Ox7FFF;
return temp;
}
2.5.3. Custom initialization implementation

Call the custom code section initialization function at system startup, as shown in Table 2-18.
Initialization implementation of .c files loaded to specified location.

Table 2-18. Initialization implementation of .c files loaded to specified location

void ModuleLoader_Init(void)
{

uint32_t *src, *dst;

uint32_t size;

/* copy RAM module functions */

src =& __ram_module_functions_loadaddr__;

dst =& ram_module_functions_start__;

size = ((uint32_t)&__ram_module_functions_end__ -

(uint32_t)& ram_module_functions_start_)/ 4;

for(uint32_t i = 0; i < size; i++) {

*dst++ = *src++;

/* copy ITCM module functions */
src = &__ittm_module_functions_loadaddr__;
dst =& ittm_module_functions_start_;

size = ((uint32_t)&__itcm_module_functions_end___ -

(uint32_t)& _itcm_module_functions_start__)/ 4;

for(uint32_ti=0; i < size; i++) {

*dst++ = *src++;

/* copy DTCM module functions */

src = &__dtcm_module_functions_loadaddr__;

dst =& _dtcm_module_functions_start__;

size = ((uint32_t)&__dtcm_module_functions_end__ -

(uint32_t)& dtcm_module_functions_start_) / 4;

for(uint32_ti=0;i < size; i++) {

*dst++ = *src++;

28

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

Cortex-M Processor

GigaDevice
}
[* copy SRAMO module functions */
src = &__sramO0_module_functions_loadaddr__;
dst = &__sram0_module_functions_start__;
size = ((uint32_t)&__sramO_module_functions_end__ -
(uint32_t)&__sram0_module_functions_start__)/ 4;
for(uint32_ti=0;i < size; i++) {
*dst++ = *src++;
}
}
Note: Initialization is placed before the cache initialization function.
2.5.4. Test verification

By using UART printing, test the function loading into the specified memory layout for
verification. Code as shown in Table 2-19. Verification code for .c file loaded into the

specified memory.

Table 2-19. Verification code for .c file loaded into the specified memory
void TestAllIModules(void)

{

int result;
uint8_t test_data[16] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0xOF, 0x10};

printf("=== Testing C File-based Module Functions ===\r\n");

[* Test FLASH module */

printf("\n--- Testing FLASH Module (flash_module.c) ---\r\n");

printf("Executing FlashModule_Function1 at 0x%08X\r\n", (uint32_t)FlashModule_Function1);
result = FlashModule_Function1(15, 25);

printf("Result: %d\r\n", result);

printf("Executing FlashModule_Function2 at 0x%08X\r\n", (uint32_t)FlashModule_Function2);
result = FlashModule_Function2(100);
printf("Result: %d\r\n", result);

printf("Executing FlashModule_ProcessData at 0x%08X\r\n",
(uint32_t)FlashModule_ProcessData);
FlashModule_ProcessData(test_data, 8);

29

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

[* Test RAM module */

printf("\n--- Testing RAM Module (ram_module.c) ---\r\n");

printf("Executing RamModule_Function1 at 0x%08X\r\n", (uint32_t)RamModule_Function1);
result = RamModule_Function1(10, 20);

printf("Result: %d\r\n", result);

printf("Executing RamModule_Function2 at 0x%08X\r\n", (uint32_t)RamModule_Function2);
result = RamModule_Function2(0x1234);
printf("Result: 0x%08X\r\n", result);

printf("Executing RamModule_ProcessData at 0x%08X\r\n",
(uint32_t)RamModule_ProcessData);
RamModule_ProcessData(test_data, 8);

[* Test ITCM module */

printf("\n--- Testing ITCM Module (itcm_module.c) ---\r\n");

printf("Executing ltcmModule_Function1 at 0x%08X\r\n", (uint32_t)ltcmModule_Function1);
result = tcmModule_Function1(7, 11);

printf("Result: %d\r\n", result);

printf("Executing ltcmModule_Function2 at 0x%08X\r\n", (uint32_t)ltcmModule_Function2);
result = ltcmModule_Function2(500);
printf("Result: %d\r\n", result);

printf("Executing ltcmModule_ProcessData at 0x%08X\r\n",
(uint32_t)ItcmModule_ProcessData);
ltcmModule_ProcessData(test_data, 8);

/* Test DTCM module */

printf("\n--- Testing DTCM Module (dtcm_module.c) ---\r\n");

printf("Executing DicmModule_Function1 at 0x%08X\r\n", (uint32_t)DtcmModule_Function1);
result = DtcmModule_Function1(33, 44);

printf("Result: %d\r\n", result);

printf("Executing DicmModule_Function2 at 0x%08X\r\n", (uint32_t)DtcmModule_Function2);
result = DtcmModule_Function2(200);
printf("Result: %d\r\n", result);

printf("Executing DtcmModule_ProcessData at 0x%08X\r\n",
(uint32_t)DtcmModule_ProcessData);
DtcmModule_ProcessData(test_data, 8);

30

AN311

c Scatter Loading Instructions of GD32 Embedded Builder for Arm

GigaDevice

Cortex-M Processor

/*1

*/

{

(uint32_t)SramOModule_ProcessData);

void main(void)

[* Test SRAMO module */

printf("\n--- Testing SRAMO Module (sram0_module.c) ---\r\n");

printf("Executing SramOModule_Function1 at 0x%08X\r\n", (uint32_t)SramOModule_Function1);
result = SramOModule_Function1(60, 40);

printf("Result: %d\r\n", result);

printf("Executing SramOModule_Function2 at 0x%08X\r\n", (uint32_t)Sram0OModule_Function2);
result = SramOModule_Function2(0x8000);
printf("Result: 0x%04X\r\n", result);

printf("Executing SramOModule_ProcessData at 0x%08X\r\n",

SramOModule_ProcessData(test_data, 8);

printf("\n ==\r\n\r\n");

\brief main function
\param[in] none
\param[out] none

\retval none

gd_eval_com_init(EVAL_COM);

printf("GD32H7xx C File-based Scatter Loading Example\r\n");
printf(" ==== :::::::::::\r\n");

printf("This example demonstrates loading entire C files\r\n");
printf("to different memory regions for optimized execution.\r\n\r\n");

/* Initialize all modules */
ModuleLoader_Init();

/* Enable the CPU cache */
cache_enable();

mpu_config();

/* Print all module function addresses */
PrintModuleAddresses();

31

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311

dded Builder for Arm
Cortex-M Processor

/* Test all modules */
TestAllModules();

printf("All C file-based module tests completed\r\n");

printf("Each module file is loaded to its designated memory region.\r\n");

uint32_t loop_count = 0;

while(1) {

loop_count++;

/* Periodic address verification */
if(loop_count % 10 == 1) {

printf("\n=== Periodic Address Verification (Loop %d) ===\r\n", loop_count);

printf("flash_module.c functions in FLASH:\r\n");

printf(" FlashModule_Function1: 0x%08X\r\n", (uint32_t)FlashModule_Function1);

printf("ram_module.c functions in AXISRAM:\r\n");

printf(" RamModule_Function1 : 0x%08X\r\n", (uint32_t)RamModule_Function1);

printf("itcm_module.c functions in ITCMRAM:\r\n");

printf(" ltcmModule_Function1 : 0x%08X\r\n", (uint32_t)ltcmModule_Function1);

printf("dtcm_module.c functions in DTCMRAM:\r\n");

printf(" DtcmModule_Function1 : 0x%08X\r\n", (uint32_t)DtcmModule_Function1);

printf("sram0_module.c functions in SRAMO:\r\n");

printf(" SramOModule_Function1: 0x%08X\r\n", (uint32_t)SramOModule_Function1);

printf("==

[* Simple delay */
for(volatile int i = 0; i < 2000000; i++);

[* Stop after a few loops for demonstration */

if(loop_count >= 3) {
printf("C file-based scatter loading demonstration completed.\r\n");
break;

\r\n\r\n");

32

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

while(1) {

Test log as shown in Table 2-20. Log for loading .c file into the specified memory. The

test result is consistent with the actual allocation.

Table 2-20. Log for loading .c file into the specified memory
GD32H7xx C File-based Scatter Loading Example

This example demonstrates loading entire C files

to different memory regions for optimized execution.

Initializing C file-based module functions...
Copying RAM module functions...

RAM module: 0x2400D000 - 0x2400D158 (344 bytes)
Copying ITCM module functions...

ITCM module: 0x00002000 - 0x000020EOQ (224 bytes)
Copying DTCM module functions...

DTCM module: 0x20002000 - 0x20002198 (408 bytes)
Copying SRAMO module functions...

SRAMO module: 0x30000800 - 0x30000928 (296 bytes)

C file-based module functions initialization completed!

=== Module Function Entry Addresses ===

--- FLASH Module (flash_module.c) ---
Section Range: 0x08020000 - 0x08020130

FlashModule Function1 : 0x08020001
FlashModule _Function2 : 0x08020065
FlashModule ProcessData : 0x080200B1

FlashModule GetProcessedValue: 0x08020115

--- RAM Module (ram_module.c) ---
FLASH Source: 0x08020130
RAM Target : 0x2400D000 - 0x2400D158

RamModule_Function1 : 0x2400D001
RamModule_Function2 : 0x2400D035
RamModule_ProcessData : 0x2400D075
RamModule_SortArray : 0x2400D11F

33

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311
dded Builder for Arm
Cortex-M Processor

--- ITCM Module (itcm_module.c) ---
FLASH Source: 0x08020288
ITCM Target : 0x00002000 - 0x000020E0

ltcmModule_Function1 : 0x00002001
ltcmModule_Function2 : 0x0000202D
ltcmModule_ProcessData : 0x0000204F

ItcmModule_CriticalCalculation: 0x000020B3

--- DTCM Module (dtcm_module.c) ---
FLASH Source: 0x08020368
DTCM Target : 0x20002000 - 0x20002198

DtcmModule_Function1 : 0x20002001

DtcmModule_Function2 : 0x2000206D
DtcmModule_ProcessData : 0x200020D9
DtcmModule_GetBufferSum : 0x20002155

--- SRAMO Module (sramQ_module.c) ---
FLASH Source: 0x08020500
SRAMO Target: 0x30000800 - 0x30000928

SramOModule_Function1 : 0x30000801
SramOModule_Function2 : 0x30000839
SramOModule_ProcessData : 0x3000086D

SramOModule_ValidateAndProcess: 0x300008F9

=== Testing C File-based Module Functions ===

--- Testing FLASH Module (flash_module.c) ---
Executing FlashModule_Function1 at 0x08020001
FlashModule_Function1: a=15, b=25

Result: 18897

Executing FlashModule_Function2 at 0x08020065
FlashModule_Function2: x=100

Result: 100

Executing FlashModule_ProcessData at 0x080200B1
FlashModule_ProcessData: processing 8 bytes

--- Testing RAM Module (ram_module.c) ---
Executing RamModule_Function1 at 0x2400D001
RamModule_Function1: a=10, b=20

34

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311
dded Builder for Arm
Cortex-M Processor

Result: 43730

Executing RamModule_Function2 at 0x2400D035
RamModule_Function2: x=4660

Result: OxFFFFFFFF

Executing RamModule_ProcessData at 0x2400D075
RamModule_ProcessData: processing 8 bytes

--- Testing ITCM Module (itcm_module.c) ---
Executing ItcmModule_Function1 at 0x00002001
Result: 305419817

Executing IltcmModule_Function2 at 0x0000202D
Result: 3513

Executing ItcmModule_ProcessData at 0x0000204F

--- Testing DTCM Module (dtcm_module.c) ---
Executing DtcmModule_Function1 at 0x20002001
DtcmModule_Function1: a=33, b=44

Result: 77

Executing DtcmModule_Function2 at 0x2000206D
DtcmModule_Function2: x=200

Result: 99200

Executing DtcmModule_ProcessData at 0x200020D9
DtcmModule_ProcessData: processing 8 bytes

--- Testing SRAMO Module (sram0_module.c) ---
Executing SramOModule_Function1 at 0x30000801
SramOModule_Function1: a=60, b=40

Result: 40

Executing SramOModule_Function2 at 0x30000839
SramOModule_Function2: x=32768

Result: 0x1000

Executing SramOModule_ProcessData at 0x3000086D
SramOModule_ProcessData: processing 8 bytes

All C file-based module tests completed!

Each module file is loaded to its designated memory region.

=== Periodic Address Verification (Loop 1) ===
flash_module.c functions in FLASH:
FlashModule_Function1: 0x08020001

35

c Scatter Loading Instructions of GD32 Embe

GigaDevice

AN311
dded Builder for Arm
Cortex-M Processor

2.6.

ram_module.c functions in AXISRAM:
RamModule_Function1 : 0x2400D001
itcm_module.c functions in ITCMRAM:
ltcmModule_Function1 : 0x00002001
dtcm_module.c functions in DTCMRAM:
DtcmModule_Function1 : 0x20002001
sramO_module.c functions in SRAMO:
SramOModule_Function1: 0x30000801

C file-based scatter loading demonstration completed.

SDRAM scatter loading implementation.

The implementation of SDRAM scatter loading can refer to sections 2.3, 2.4 and 2.5. Before
performing custom initialization, EXMC initialization and MPU configuration need to be
implemented. Code as shown in Table 2-21. SDRAM initialization code.

Table 2-21. SDRAM initialization code
#include "exmc_sdram.h"
[*!

\brief initialize the sdram
\param[in] none
\param[out] none
\retval none
*/
void Dolnit(void)
{
[* configure the clock of EXMC */
rcu_exmc_config();
[* configure the MPU */
mpu_config();
[* configure the EXMC access mode */
exmc_synchronous_dynamic_ram_init(EXMC_SDRAM_DEVICEO);
_10intij;
for(i=0;i<500;i++){
for(j=0;j<5000;j++);

}

Note: In the default configuration of the M7 core, certain addresses are in regions where
instruction execution is prohibited. Thus, if code is loaded into those regions, errors will occur
during execution. The SDRAM address allocation in the EXMC of GD32H7xx is 0xC0000000-

36

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

O0xDFFFFFFF, which lies within this prohibited address range. Configure the MPU (Memory
Protection Unit) registers to enable instruction execution in the 0xC0000000 address range.

37

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
GigaDevice Cortex-M Processor

3. Revision history

Table 3-1. Revision history

Revision No. Description Date
1.0 Initial Release Dec.30 2025

38

AN311
c Scatter Loading Instructions of GD32 Embedded Builder for Arm
Cortex-M Processor

GigaDevice

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This
document, including any product of the Company described in this document (the “Product”), is owned by the Company
according to the laws of the People’s Republic of China and other applicable laws. The Company reserves all rights
under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the
Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the
property of their respective owner and referred to for identification purposes only.

To the maximum extent permitted by applicable law, the Company makes no representations or warranties of any
kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor
does the Company assume any liability arising out of the application or use of any Product. Any information provided in
this document is provided only for reference purposes. It is the sole responsibility of the user of this document to
determine whether the Product is suitable and fit for its applications and products planned, and properly design, program,
and test the functionality and safety of its applications and products planned using the Product. The Product is designed,
developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the
Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities,
atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments,
pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems
(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not
limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for
example, EPS, braking, ADAS (cameral/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,
Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-
contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other
transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected
to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses").
Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company
is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or
distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.
Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its
suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims
for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to
make changes, corrections, modifications or improvements to this document and the Product described herein at any
time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2026 GigaDevice Semiconductor Inc. — All rights reserved

39

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Implementation of scatter loading in Embedded Builder
	2.1. Use manually written ld file
	2.2. VMA and LMA
	2.3. Load global variables and global arrays to the specified location
	2.3.1. Custom section
	2.3.2. Variable definitions in C code
	2.3.3. Custom initialization implementation
	2.3.4. Test verification

	2.4. Load functions to the specified location
	2.4.1. Custom section
	2.4.2. Function definition in C code
	2.4.3. Custom initialization implementation
	2.4.4. Test verification

	2.5. Load .c file code section to the specified location
	2.5.1. Custom section
	2.5.2. File definition in C code
	2.5.3. Custom initialization implementation
	2.5.4. Test verification

	2.6. SDRAM scatter loading implementation.

	3. Revision history

