GigaDevice Semiconductor Inc.

Using the EIDE Plugin in VS Code to
Develop GD32 MCU

Application Note
AN264

Revision 1.0

(Mar. 2025)

AN264
GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU
Table of Contents
TaDIE OF CONTENTS ...t e e e e e e 2
LiSt Of FIQUIESooeeiiii e e e e e e e 3
LiSt Of TADIES ... 4
1. INtrodUCTION 5
2. Development enVvironmMeNnt.................coooiiiiiiiiii s 6
3. Environment configuration.....................ccoooo 7
3.1. Keil5 compilation environment configuration............................ 7
3.2. IAR compilation environment configuration..........................., 7
3.3. GCC compilation environment configuration........................cccc . 8
3.4. SEGGER Jlink environment configurationcc 9
3.5. OpenOCD environment configuration.....................oooo o 10
3.6. Debug environment configurationo 11
4. Project development ... s 12
4.1. Projectimport ... 12
4.2. Project compilation and download.....................ccccc 14
4.2.1. Project compilation and download OPLIONScoociiiiiiiiiiiii e 14
4.2.2. Use Keil compiler for project compilationcccoocueiiiiiiiiiiini e 15
4.2.3. Use IAR for project COmMPIlationcoouiiiiiiiiiiiii e 15
4.2.4. Use GCC for project compilation ..o 16
4.2.5. Use OpenOCD for programmingcccouueeeeiiieeee it arieee e siree e s s e e sibee e e s sbaee e s sbaeeesnnees 16
4.3. Project debuggingooooiiiiiiii 18
4.3.1. Create debug configuration OPtIONScuuviiiiiiii i 18
4.3.2. Use Cortex-Debug for debugging ..o 19
5. ReVISION NiSTOrY ... 21

Q AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

List of Figures

Figure 2-1. Plugin installation Steps ... 6
Figure 3-1. Keil5 environment toolchain installation path configuration 7
Figure 3-2. IAR environment toolchain installation path configuration....................................... 8
Figure 3-3. ARM GCC toolchain installation path configuration.......................cccccii e, 8
Figure 3-4. RISCV GCC toolchain installation path configuration............................ooc 9
Figure 3-5. Jlink tool installation path configurationcccoo 9
Figure 3-6. OpenOCD tool installation path configurationc.cooc 10
Figure 3-7. Debug environment configuration step 1ccocoii i 1"
Figure 3-8. Debug environment configuration step 2ccociinii 1"
Figure 4-1. Keil5 project import configuration 1.................cccci i 12
Figure 4-2. Keil5 project Import configuration 2....................ccco i 13
Figure 4-3. Keil5 project import configuration 3.................coo 13
Figure 4-4. Keil5 project import SUCCESS............oocuiiiiiiiiiiii e 14
Figure 4-5. Project operation OptioNS ..ot 14
Figure 4-6. Keil5 compiler for project compilationccccccoiiiiiic 15
Figure 4-7. IAR compiler performs project compilationoocii i, 16
Figure 4-8. GCC compiler performs project compilation....................cccoocciiiiiiiiiic e, 16
Figure 4-9. OpenOCD pre-programming configurationc.cccccciiiii s 17
Figure 4-10. OpenOCD ProgramMingcccccoiiuiiieiiiiiieeiiiieeeriieeeestreeessbreeeestreeeesbeeeeeanrneeesanes 17
Figure 4-11. Debug configuration file generation step 1cccoi i, 18
Figure 4-12. Debug configuration file generation step 2ccccoo 18
Figure 4-13. Add SVD fileoooiiiii et 19
Figure 4-14. Use Cortex-Debug to start debugging................ccooiiiiiii e 19
Figure 4-15. Use Cortex-Debug for debuggingccccooiiiiiiiiii e 20

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

List of Tables

Table 5-1. ReVISiON hiStOry..............oooiiiiiiiii e 21

GigaDevice

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

1.

Introduction

This application note aims to guide developers in using Visual Studio Code (VS Code) with
the EIDE (Embedded IDE) and Cortex-Debug plugins for embedded microcontroller (MCU)
development and debugging. Through this note, developers will learn how to configure the
development environment, manage projects, write code, and debug embedded programs.
The goal of this note is to help developers fully utilize the powerful features of VS Code,
enhance development efficiency, and streamline the MCU development process.

GigaDevice

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

2.

Development environment

Development board: GD32W515P-EVAL-V1.1

Hardware debugger: J-Link V11 / GD_Link V2

Development environment: VS Code + EIDE + Cortex-Debug
Operating system: WIN10 64-bit OS

EIDE and Cortex-Debug plugins can be installed via the VS Code extensions panel, which
refers to Figure 2-1. Plugin installation steps.

Figure 2-1. Plugin installation steps

 RECOMMENDED

X ®odo Wo

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

3. Environment configuration

Environment configuration includes project compilation environment and download
environment. The EIDE plugin supports project development using Keil5, IAR, and GCC
environments, which can be configured as needed by the user.

3.1. Keil5 compilation environment configuration

Open EIDE plugin settings and modify the Keil5 environment installation path to the local path,
which refers to Figure 3-1. Keil5 environment toolchain installation path confiquration.

Figure 3-1. Keil5 environment toolchain installation path configuration

45 Settings Foune

Backup and Sync Settings

v Axf To EIf

~1# for ARMCC compiler

3.2. IAR compilation environment configuration

Open EIDE plugin settings and modify the IAR environment installation path to the local path,
which refers to Figure 3-2. IAR environment toolchain installation path configuration.

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

Figure 3-2. IAR environment toolchain installation path configuration

b Om -
45 Settings found < "’

= Keil Project Backup and Sync Settings
Open Project

Create Project

Import Project
Add Item

EIDE: Display Language

3.3. GCC compilation environment configuration

Open EIDE plugin settings and modify the GCC toolchain installation path to the local path,
which refers to Figure 3-3. ARM GCC toolchain installation path confiquration and Fiqure
3-4. RISCV GCC toolchain installation path confiquration.

Figure 3-3. ARM GCC toolchain installation path configuration

HDE o= x B m
~ EIDE PROJECTS

45 Settings found. = 7
[

2 Keil Project Backup and Sync Settings
Open Project
Create Project

Import Project

stall Directory

directory [example: D:\ace

Auto Generate RTE_Components
£_Componentsh

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

Figure 3-4. RISCV GCC toolchain installation path configuration

Open Project
Create Project

vate template repository so that eide

Import Project

- OPERATIONS

o

Y32W515PI (Project) Task

3.4. SEGGER Jlink environment configuration

Open the EIDE plugin settings and modify the SEGGER Jlink environment installation path
to the local path, which refers to Figure 3-5. Jlink tool installation path confiquration.

Figure 3-5. Jlink tool installation path configuration

o Qm

ace Keil_Project Backup and Sync Settings
Open Project

Create Project

Import Project

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

3.5. OpenOCD environment configuration

Open the EIDE plugin settings and modify the OpenOCD environment installation path to the
local path, which refers to Figure 3-6. OpenOCD tool installation path configuration.

Figure 3-6. OpenOCD tool installation path configuration

oo

45 Settings Found ==

Backup and Sync Settings

10

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

3.6. Debug environment configuration

After installing the Cortex-Debug plugin, debug tool configuration is required, including GDB
Server and GDB settings. Using the ARM GCC environment as an example, which refers to
Figure 3-7. Debug environment configuration step 1 and Figure 3-8. Debug environment

configuration step 2.

Figure 3-7. Debug environment configuration step 1

= Settings X

@extman Xt 45 Settings Foun
~ INsTALLED
Backup and Sync Settings
Cortex-Debug
@ AR Cortex-M GDB Debugger support for VSCode

T mans2s

. debug-tracker.
meu-dek

Embedded IDE

Cortex-debug: Variable Use Natural Format
 Iftrue, display variables in their natural forma

01010 MemoryVi
0 ide

10|

Cortex-debua: Arm Toolchain Prefix

File Edit S G R - € £ Project (L =]

g
x-debug. arnToolchainPath”

4 4 Flash

11

AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU
4. Project development
4.1. Project import

Using Keil5 project import as an example, the steps are as follows:

Step 1: Import the project, select MDK, then select ARM, which refers to Figure 4-1. Keil5
project import configuration 1.

Figure 4-1. Keil5 project import configuration 1

Step 2: Select the local Keil5 project and import it, which refers to Fiqure 4-2. Keil5 project
Import configuration 2.

12

GigaDevice

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

Figure 4-2. Keil5 project Import configuration 2

Open Project
Create Project
Import Project

4[| KREE > Deta(D) » GDI2W5x Firmwore_Library » Template » Keil Project

S

RN [Projectuvprajx ,‘ Keil Project (.uvprojtuvpr

o

Step 3: Follow the instructions to select the EIDE project generation directory, which refers to
Figure 4-3. Keil5 project import configuration 3.

Figure 4-3. Keil5 project import configuration 3

0JECTS

Open Project
Create Project

Import Project

Step 4: Project imported successfully, which refers to Fiqure 4-4. Keil5 project import

success.

13

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

Figure 4-4. Keil5 project import success

4.2. Project compilation and download

4.2.1. Project compilation and download options

Right-click the project name to perform project compilation and download operations, which
refers to Figure 4-5. Project operation options.

Figure 4-5. Project operation options

I =]

14

AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU
4.2.2. Use Keil compiler for project compilation
Before using the Keil compiler for project compilation, ensure the correct compiler version,
startup file, and linker file are properly configured, which refers to Figure 4-6. Keil5 compiler
for project compilation. The Keil compiler includes AC5 and AC6.
Figure 4-6. Keil5 compiler for project compilation
BUILDER OPTIONS -
% Linker
[e | output Format
[| Don't Output Hex/Bin File
4.2.3. Use IAR for project compilation

Before using the IAR compiler for project compilation, ensure the correct startup file is used,
and the linker file and compiler options are properly configured, which refers to Fiqure 4-7.
IAR compiler performs project compilation.

15

AN264
GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

Figure 4-7. IAR compiler performs project compilation

2 silder Options X

BUILDER OPTIONS

2 User Task @ Giobal Options % C/Ce+ Compiler % Assembler % Linker

¥ Destroy
[Allow VLA (

4.2.4. Use GCC for project compilation

Before using the GCC compiler for project compilation, ensure the correct startup file is used
and the linker file is properly configured, which refers to Figure 4-8. GCC compiler performs
project compilation.

Figure 4-8. GCC compiler performs project compilation

4.2.5. Use OpenOCD for programming

Before using OpenOCD for programming, specify the debugger interface and MCU
16

GigaDevice

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

configuration file, which refers to Figure 4-9. OpenOCD pre-programming confiqguration.

Figure 4-9. OpenOCD pre-programming configuration

0z 0 Q0
4_gdlink

Click the download button to execute the programming operation, which refers to Figure 4-10.
OpenOCD programming.

Figure 4-10. OpenOCD programming

Welcome X

Walkthroughs

*" Get Started with v

® Learn the Fundamentals

@ Got Started with C++ Development (Updated

Recent

17

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU
4.3. Project debugging
4.3.1. Create debug configuration options

Use EIDE to create debug configuration for the project, which refers to Fiqure 4-11. Debug

configuration file generation step 1 and Fiqure 4-12. Debug configuration file

generation step 2.

Figure 4-11. Debug configuration file generation step 1

o Qm

ess any kay to close it.

file Edit Go - ¢ i 0:0Qm =]

bodh v k@

* FIDE PRO

Create

18

GigaDevice

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

4.3.2.

According to the generated launch.json file, add the peripheral Register Description file (SVD),
which refers to Figure 4-13. Add SVD file.

Figure 4-13. Add SVD file

RUN A G > GD32W515PL OpenOCD (Project) v | &3 =+
> VARIABLES
> WaTGH
> CALLSTACK
> BREAKPOINTS
> CORTEX LIVE WATCH
> XPERIPHERALS

Add Configuration...

Pl ®Build L Flash

Use Cortex-Debug for debugging

Use Open OCD for debugging, which refers to Figure 4-14. Use Cortex-Debug to start
debugqing.

Figure 4-14. Use Cortex-Debug to start debugging

> b 2 ¥ T OO0

RUN AND DEBUG [B>

2 VARIABLES

CALL STACK
maing@xose0ada

- BREAKPOINTS

> CORTEX LIVE WATCH >
X @240 W0 & GDIWSI5PL OpenOCD (Project) 3.77KiB EIDE Project GD32WS15P1 3 Build L Flash In77,Coll Spacessd4 UTF8 CRIF (} € Win32 0O

Through the Cortex-Debug plugin, users can perform basic debugging commands (run, step,

stop), disassembly code viewing, memory window viewing, CPU register viewing, variable
19

AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

viewing, and call stack viewing, which refers to Figure 4-15. Use Cortex-Debugq for

debugging.

Figure 4-15. Use Cortex-Debug for debugging

RUNANDDEBUG [> GD32W515PI1: OpenOCD (Project 4% -
~ VARIABLES 8 n
D Disable Hex m
> Global
> Static: d/GD32WS1x_ Firmware Library,Template/main.c
Registers
none

none

main(

systick_config(

gd_eval led init
gd_eval_led_init
gd_eval led ini

gd_eval_con_init

LED1,
LED2,

LED:
EVAL_COM®!

<led_sparksS6>
<led_spark+6@>

<led_sparks62> 16bd

8@bs
21be

systick_configy()
<main+d>
/* initilize the LEDs, USART and key */

gd_eval_key_init(KEY_TAMPER WAKEUP, KEY_MODE_GPIO; <main+14>

printf("

~ CALL STAGK Paused on breskpoint oA
printf

main@0xB8080dac d:\GD32WS51x_Firmware_Librany\Template...

<main+16>
gd_eval led init(LED:
rcu_clock_freq_get(CK_SYS
rcu clock frea get(CK AHE

s | Memo

ZNDEEO @ Status: Debugger attached, stopped

03-0

- BREAKPOINTS
i main.
CORTEX LIVE WATCH
~ XPERIPHERALS
(4001

00000000
08601141

00600000
N ﬂ 03001161
¥ ®0Mo W0 > GD32W515Pk OpenOCD (Project) EIDE Project: GD32W515PI ¥ Buid {- Flash

03001021
00000000

08001045

o8
08001111

00000000
es000fse
03001145
03001165

eb-es ef-6c 12-10 17-14 1b-18
03000179 08000f7f
00000000 00000000

08001055

©80010b9 880818bd
€80010cd ©30010d1 eseeledo esealedd
00000000 ©36010e 0080000 BOOAEOOD
€80016fd 08001101 08001169 B0EA0OD
08001110 ©200111d 08001121 08001125 08091129
08001131 00000000

00080000 BOOEREBO
00000000 03001135 00000000 08001139 ©800113d
00000000 00000000

00000000 00000000 ©OOOG000 ©O0AA00
08001149 ©0860114d 08001151 ©8091155 08001159 03060115d
03001169 03001160 08001171 ©8001175 bES148a5 6416801

20

GigaDevice

AN264

Using the EIDE Plugin in VS Code to Develop GD32 MCU

5.

Revision history

Table 5-1. Revision history

Revision No.

Description

Date

1.0

Initial Release

Apr.18 2021

21

e AN264

GigaDevice Using the EIDE Plugin in VS Code to Develop GD32 MCU

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This
document, including any product of the Company described in this document (the “Product”), is owned by the Company
according to the laws of the People’s Republic of China and other applicable laws. The Company reserves all rights
under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the
Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the
property of their respective owner and referred to for identification purposes only.

To the maximum extent permitted by applicable law, the Company makes no representations or warranties of any
kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor
does the Company assume any liability arising out of the application or use of any Product. Any information provided in
this document is provided only for reference purposes. It is the sole responsibility of the user of this document to
determine whether the Product is suitable and fit for its applications and products planned, and properly design, program,
and test the functionality and safety of its applications and products planned using the Product. The Product is designed,
developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the
Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities,
atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments,
pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems
(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not
limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for
example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,
Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-
contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other
transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected
to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses").
Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company
is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or
distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.
Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its
suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims
for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to
make changes, corrections, modifications or improvements to this document and the Product described herein at any
time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2025 GigaDevice Semiconductor Inc. — All rights reserved

22

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Development environment
	3. Environment configuration
	3.1. Keil5 compilation environment configuration
	3.2. IAR compilation environment configuration
	3.3. GCC compilation environment configuration
	3.4. SEGGER Jlink environment configuration
	3.5. OpenOCD environment configuration
	3.6. Debug environment configuration

	4. Project development
	4.1. Project import
	4.2. Project compilation and download
	4.2.1. Project compilation and download options
	4.2.2. Use Keil compiler for project compilation
	4.2.3. Use IAR for project compilation
	4.2.4. Use GCC for project compilation
	4.2.5. Use OpenOCD for programming

	4.3. Project debugging
	4.3.1. Create debug configuration options
	4.3.2. Use Cortex-Debug for debugging

	5. Revision history

