

GigaDevice Semiconductor Inc.

Using the EIDE Plugin in VS Code to

Develop GD32 MCU

Application Note

AN264

Revision 1.0

(Mar. 2025)

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

2

 Table of Contents

Table of Contents ... 2

List of Figures .. 3

List of Tables .. 4

1. Introduction ... 5

2. Development environment ... 6

3. Environment configuration .. 7

3.1. Keil5 compilation environment configuration ... 7

3.2. IAR compilation environment configuration .. 7

3.3. GCC compilation environment configuration .. 8

3.4. SEGGER Jlink environment configuration .. 9

3.5. OpenOCD environment configuration .. 10

3.6. Debug environment configuration ... 11

4. Project development .. 12

4.1. Project import .. 12

4.2. Project compilation and download ... 14

4.2.1. Project compilation and download options ... 14

4.2.2. Use Keil compiler for project compilation ... 15

4.2.3. Use IAR for project compilation .. 15

4.2.4. Use GCC for project compilation .. 16

4.2.5. Use OpenOCD for programming .. 16

4.3. Project debugging ... 18

4.3.1. Create debug configuration options .. 18

4.3.2. Use Cortex-Debug for debugging ... 19

5. Revision history .. 21

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

3

List of Figures

Figure 2-1. Plugin installation steps .. 6

Figure 3-1. Keil5 environment toolchain installation path configuration 7

Figure 3-2. IAR environment toolchain installation path configuration ... 8

Figure 3-3. ARM GCC toolchain installation path configuration ... 8

Figure 3-4. RISCV GCC toolchain installation path configuration .. 9

Figure 3-5. Jlink tool installation path configuration ... 9

Figure 3-6. OpenOCD tool installation path configuration .. 10

Figure 3-7. Debug environment configuration step 1 ... 11

Figure 3-8. Debug environment configuration step 2 ... 11

Figure 4-1. Keil5 project import configuration 1 ... 12

Figure 4-2. Keil5 project Import configuration 2 ... 13

Figure 4-3. Keil5 project import configuration 3 ... 13

Figure 4-4. Keil5 project import success ... 14

Figure 4-5. Project operation options .. 14

Figure 4-6. Keil5 compiler for project compilation ... 15

Figure 4-7. IAR compiler performs project compilation .. 16

Figure 4-8. GCC compiler performs project compilation ... 16

Figure 4-9. OpenOCD pre-programming configuration ... 17

Figure 4-10. OpenOCD programming .. 17

Figure 4-11. Debug configuration file generation step 1 ... 18

Figure 4-12. Debug configuration file generation step 2 ... 18

Figure 4-13. Add SVD file .. 19

Figure 4-14. Use Cortex-Debug to start debugging.. 19

Figure 4-15. Use Cortex-Debug for debugging ... 20

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

4

List of Tables

Table 5-1. Revision history .. 21

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

5

1. Introduction

This application note aims to guide developers in using Visual Studio Code (VS Code) with

the EIDE (Embedded IDE) and Cortex-Debug plugins for embedded microcontroller (MCU)

development and debugging. Through this note, developers will learn how to configure the

development environment, manage projects, write code, and debug embedded programs.

The goal of this note is to help developers fully utilize the powerful features of VS Code,

enhance development efficiency, and streamline the MCU development process.

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

6

2. Development environment

◼ Development board: GD32W515P-EVAL-V1.1

◼ Hardware debugger: J-Link V11 / GD_Link V2

◼ Development environment: VS Code + EIDE + Cortex-Debug

◼ Operating system: WIN10 64-bit OS

EIDE and Cortex-Debug plugins can be installed via the VS Code extensions panel, which

refers to Figure 2-1. Plugin installation steps.

Figure 2-1. Plugin installation steps

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

7

3. Environment configuration

Environment configuration includes project compilation environment and download

environment. The EIDE plugin supports project development using Keil5, IAR, and GCC

environments, which can be configured as needed by the user.

3.1. Keil5 compilation environment configuration

Open EIDE plugin settings and modify the Keil5 environment installation path to the local path,

which refers to Figure 3-1. Keil5 environment toolchain installation path configuration.

Figure 3-1. Keil5 environment toolchain installation path configuration

3.2. IAR compilation environment configuration

Open EIDE plugin settings and modify the IAR environment installation path to the local path,

which refers to Figure 3-2. IAR environment toolchain installation path configuration.

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

8

Figure 3-2. IAR environment toolchain installation path configuration

3.3. GCC compilation environment configuration

Open EIDE plugin settings and modify the GCC toolchain installation path to the local path,

which refers to Figure 3-3. ARM GCC toolchain installation path configuration and Figure

3-4. RISCV GCC toolchain installation path configuration.

Figure 3-3. ARM GCC toolchain installation path configuration

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

9

Figure 3-4. RISCV GCC toolchain installation path configuration

3.4. SEGGER Jlink environment configuration

Open the EIDE plugin settings and modify the SEGGER Jlink environment installation path

to the local path, which refers to Figure 3-5. Jlink tool installation path configuration.

Figure 3-5. Jlink tool installation path configuration

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

10

3.5. OpenOCD environment configuration

Open the EIDE plugin settings and modify the OpenOCD environment installation path to the

local path, which refers to Figure 3-6. OpenOCD tool installation path configuration.

Figure 3-6. OpenOCD tool installation path configuration

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

11

3.6. Debug environment configuration

After installing the Cortex-Debug plugin, debug tool configuration is required, including GDB

Server and GDB settings. Using the ARM GCC environment as an example, which refers to

Figure 3-7. Debug environment configuration step 1 and Figure 3-8. Debug environment

configuration step 2.

Figure 3-7. Debug environment configuration step 1

Figure 3-8. Debug environment configuration step 2

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

12

4. Project development

4.1. Project import

Using Keil5 project import as an example, the steps are as follows:

Step 1: Import the project, select MDK, then select ARM, which refers to Figure 4-1. Keil5

project import configuration 1.

Figure 4-1. Keil5 project import configuration 1

Step 2: Select the local Keil5 project and import it, which refers to Figure 4-2. Keil5 project

Import configuration 2.

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

13

Figure 4-2. Keil5 project Import configuration 2

Step 3: Follow the instructions to select the EIDE project generation directory, which refers to

Figure 4-3. Keil5 project import configuration 3.

Figure 4-3. Keil5 project import configuration 3

Step 4: Project imported successfully, which refers to Figure 4-4. Keil5 project import

success.

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

14

Figure 4-4. Keil5 project import success

4.2. Project compilation and download

4.2.1. Project compilation and download options

Right-click the project name to perform project compilation and download operations, which

refers to Figure 4-5. Project operation options.

Figure 4-5. Project operation options

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

15

4.2.2. Use Keil compiler for project compilation

Before using the Keil compiler for project compilation, ensure the correct compiler version,

startup file, and linker file are properly configured, which refers to Figure 4-6. Keil5 compiler

for project compilation. The Keil compiler includes AC5 and AC6.

Figure 4-6. Keil5 compiler for project compilation

4.2.3. Use IAR for project compilation

Before using the IAR compiler for project compilation, ensure the correct startup file is used,

and the linker file and compiler options are properly configured, which refers to Figure 4-7.

IAR compiler performs project compilation.

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

16

Figure 4-7. IAR compiler performs project compilation

4.2.4. Use GCC for project compilation

Before using the GCC compiler for project compilation, ensure the correct startup file is used

and the linker file is properly configured, which refers to Figure 4-8. GCC compiler performs

project compilation.

Figure 4-8. GCC compiler performs project compilation

4.2.5. Use OpenOCD for programming

Before using OpenOCD for programming, specify the debugger interface and MCU

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

17

configuration file, which refers to Figure 4-9. OpenOCD pre-programming configuration.

Figure 4-9. OpenOCD pre-programming configuration

Click the download button to execute the programming operation, which refers to Figure 4-10.

OpenOCD programming.

Figure 4-10. OpenOCD programming

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

18

4.3. Project debugging

4.3.1. Create debug configuration options

Use EIDE to create debug configuration for the project, which refers to Figure 4-11. Debug

configuration file generation step 1 and Figure 4-12. Debug configuration file

generation step 2.

Figure 4-11. Debug configuration file generation step 1

Figure 4-12. Debug configuration file generation step 2

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

19

According to the generated launch.json file, add the peripheral Register Description file (SVD),

which refers to Figure 4-13. Add SVD file.

Figure 4-13. Add SVD file

4.3.2. Use Cortex-Debug for debugging

Use Open OCD for debugging, which refers to Figure 4-14. Use Cortex-Debug to start

debugging.

Figure 4-14. Use Cortex-Debug to start debugging

Through the Cortex-Debug plugin, users can perform basic debugging commands (run, step,

stop), disassembly code viewing, memory window viewing, CPU register viewing, variable

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

20

viewing, and call stack viewing, which refers to Figure 4-15. Use Cortex-Debug for

debugging.

Figure 4-15. Use Cortex-Debug for debugging

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

21

5. Revision history

Table 5-1. Revision history

Revision No. Description Date

1.0 Initial Release Apr.18 2021

AN264
Using the EIDE Plugin in VS Code to Develop GD32 MCU

22

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This

document, including any product of the Company described in this document (the “Product”), is owned by the Company

according to the laws of the People’s Republic of China and other applicable laws. The Company reserves all rights

under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the

Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the

property of their respective owner and referred to for identification purposes only.

To the maximum extent permitted by applicable law, the Company makes no representations or warranties of any

kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor

does the Company assume any liability arising out of the application or use of any Product. Any information provided in

this document is provided only for reference purposes. It is the sole responsibility of the user of this document to

determine whether the Product is suitable and fit for its applications and products planned, and properly design, program,

and test the functionality and safety of its applications and products planned using the Product. The Product is designed,

developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the

Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities,

atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments,

pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems

(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not

limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for

example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,

Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-

contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other

transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected

to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses").

Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company

is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or

distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.

Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its

suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims

for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to

make changes, corrections, modifications or improvements to this document and the Product described herein at any

time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from

future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2025 GigaDevice Semiconductor Inc. – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Development environment
	3. Environment configuration
	3.1. Keil5 compilation environment configuration
	3.2. IAR compilation environment configuration
	3.3. GCC compilation environment configuration
	3.4. SEGGER Jlink environment configuration
	3.5. OpenOCD environment configuration
	3.6. Debug environment configuration

	4. Project development
	4.1. Project import
	4.2. Project compilation and download
	4.2.1. Project compilation and download options
	4.2.2. Use Keil compiler for project compilation
	4.2.3. Use IAR for project compilation
	4.2.4. Use GCC for project compilation
	4.2.5. Use OpenOCD for programming

	4.3. Project debugging
	4.3.1. Create debug configuration options
	4.3.2. Use Cortex-Debug for debugging

	5. Revision history

