

GigaDevice Semiconductor Inc.

GD32VW553 Secure Boot and Firmware

Upgrade Guide

Application Note

AN260

Revision 1.3

(March 2025)

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

1

Table of Contents

Table of Contents... 1

Abbreviations ... 2

List of Figures .. 3

List of Tables .. 4

1. Secure Boot.. 5

1.1. Introduction ... 5

1.2. FLASH ... 5

1.3. SRAM ... 6

1.4. Configuration file planning ... 8

2. Hardware configuration.. 9

3. Firmware package creation ... 11

3.1. Firmware package format ... 11

3.1.1. Factory package .. 11

3.1.2. Firmware update package ...12

3.2. Firmware encapsulation.. 12

3.2.1. Packaging format ...12

3.2.2. Boot the chain of trust. ..14

3.2.3. Key and certificate generation ..16

4. Firmware upgrade ... 20

5. Revision history .. 22

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

2

Abbreviations

Term Meaning

EFUSE One Time Program memory

IBL Immutable Boot Loader

MBL Main Boot Loader

MBL-PK Main Boot Loader Public Key

MP Mass Production

MSDK Main SDK

OTA Over the Air upgrade

ROTPK Root of Trust Public Key

ROM Read-Only Memory

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

3

List of Figures

Figure 1-1 Boot Process .. 5

Figure 1-2 Flash Map ... 6

Figure 1-3 SRAM Map .. 7

Figure 1-4 Configuration File ... 8

Figure 3-1 Schematic diagram of the factory firmware package ..12

Figure 3-2 Firmware Upgrade Package ..12

Figure 3-3 Firmware packaging format without certificate...13

Figure 3-4 Firmware packaging format with certificate..14

Figure 3-5 Certificate-less Authentication Trust Chain ..15

Figure 3-6 Certificate Authentication Trust Chain ...16

Figure 3-7 Generate ROT Key Pair...17

Figure 3-8 Generate ROT Certificate ..17

Figure 3-9 Obtaining ROTPKH ..18

Figure 3-10 Generate MBL key pair..18

Figure 3-11 Generate MBL certificate...19

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

4

List of Tables

Table 5-1. Revision history..22

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

5

1. Secure Boot

1.1. Introduction

Secure Boot is designed to ensure the authenticity and integrity of all code from the first

instruction executed by the system to the main application. There are two key points: one is

the trusted first instruction; the other is to ensure the legality and integrity of the next

executable program segment when a program segment jump occurs.

To ensure that the first instruction is always secure, the first executable program segment

is solidified in ROM, referred to as Immutable Boot Loader (IBL). When the boot mode is

locked to secure boot, the system will jump to IBL to execute the first instruction upon power-

up or reset, and it cannot be tampered with in any way. Therefore, the first instruction

possesses root trust.

The second executable program segment is placed at the beginning of FLASH and is

referred to as the Main Boot Loader (MBL). The Immutable Boot Loader (IBL) is responsible

for verifying the legality and integrity of the MBL, it can jump to the MBL only after the

verification is passed.

The subsequent executable program segment, referred to as MSDK, will be verified by

MBL, and can the jump to MSDK only after successful verification.

The boot process diagram is shown in Figure 1-1.

Figure 1-1 Boot Process

IBL MBL MSDK

verification passed verification passed

Run

Secure ROM FLASH FLASH

The EFUSE stores the hash value of the Root of Trust Public Key (ROTPK) which verify

the legality of the public key carried by the first FLASH executable program segment, and then

verify the digest signature or certificate signature with the verified public key.

1.2. FLASH

FLASH map is shown in Figure 1-2. The default configuration of GD32VW553 FLASH

size is 4M Bytes, and we will take 4M as an example.

The System Setting primarily stores the initial version information of MBL and MSDK, as

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

6

well as starting offsets, etc. The initial version information will be read and stored in the

System Status upon the first startup, and then immediately will be locked. Subsequent

updates can only advance the version number, not regress.

The System Status is maintained using a PING/PONG method, with content stored in

TLV format, including a checksum and encrypted with AES. It is primarily used to store version

information and the operational status of MSDK 0/1. The version information is used to

prevent rollback attacks, while the MSDK operational status determines whether the current

boot is preparing to verify MSDK 0 or MSDK 1. It also stores other boot-related content and

allows users to add custom storage content.

The starting position of MSDK 0 is fixed and cannot be modified, but the starting position

of MSDK 1 can be adjusted based on the size of FLASH and User Data. MSDK 0 and MSDK

1 will be used for ping-pong upgrades in the future, so it is recommended that the spaces

reserved for both are roughly the same size. Taking the released SDK as an example, the

current starting position we have set for MSDK 1 is 0x081EA000.

Figure 1-2 Flash Map

MSDK 0

MSDK 1

MBL

System Status

User Data

System Setting0x08000000

0x08008000

0x0800A000

0x083FFFFF

0x08001000

0x081EA000

1.3. SRAM

SRAM map is shown in Figure 1-3. The global variables used by ROM occupy 512 bytes.

Shared data is the information passed from ROM to MBL, including ROM version

information, ROTPK hash value, and MBL public key, etc.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

7

MBL used refers to the heap and stack utilized by MBL during runtime.

MSDK used refers to the SRAM space available for MSDK utilization.

It should be noted that in Figure 1-3, the SRAM used by MSDK overlaps with the Shared

data area and MBL area because after the execution of MBL, both spaces can be released for

MSDK use. Therefore, the starting address of the SRAM used by MSDK is also 0x20000200.

Figure 1-3 SRAM Map

MSDK used

Shared data

MBL used

ROM used0x20000000

0x20000300

0x2004FFFF

0x20000200

MSDK

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

8

1.4. Configuration file planning

The planning configuration file is located at %SDK%\config\config_gdm32.h, as shown in

Figure 1-4. This file is divided into four sections: the first section is the base address, the

second section is the SRAM layout, the third section is the FLASH layout, and the fourth

section is the firmware version. Users can modify configuration according to the actual needs

of the project. Lines marked with "Keep unchanged!" should not be modified, as they are

hardware-bound to the chip.

During the compilation, linking, and packaging process of various executable programs,

this file is used. In other words, changes to the layout of SRAM and FLASH only require

modifications to this single file.

Attention should be paid to the line RE_MBL_OFFSET. When set to 0, the MBL firmware

is compiled to boot from FLASH Boot. If Secure ROM Boot is required, this macro needs to

be modified to 0x1000.

Figure 1-4 Configuration File

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

9

2. Hardware configuration

To enable the secure boot feature, it is necessary to configure specific bits in the EFUSE.

 Boot mode selection

- Enable the secure boot startup option. At this time, both BOOT0 and BOOT1 pins

need to be pulled low, indicating booting from FLASH. A high BOOT0 indicates

booting from the ROM Bootloader, and both BOOT0 and BOOT1 being high

indicates booting from SRAM.

- Secure ROM boot is shared with the FLASH mode through the pin configuration.

- EFUSE_CTL0: BIT 0 set to 1 indicates booting from Secure ROM, while set to 0

indicates booting from FLASH.

- If Secure Boot is enabled, during the factory stage, the BOOT mode can be

permanently fixed, meaning that the system can only boot from the Secure ROM.

The following bits can be set for this purpose.

- EFUSE_CTL0: written as 0x2B

 Verification option

- The verification option determines whether the ROM will verify the authenticity of

the MBL firmware and certificates; if not set, verification will not occur, and secure

boot is not truly enabled.

- EFUSE_CTL1: BIT6 represents verification of firmware signature, BIT6 + BIT7

represents verification of certificate + firmware signature.

 ROTPKH

- ROTPKH is used to verify the legality of the ROTPK public key carried by the MBL

firmware, and the ROTPK public key is used to verify the signature of the MBL digest

or the certificate signature. The generation method of the ROTPK key pair and

ROTPKH is referred to in section 3.2.3.

- EFUSE_ROTPKKEYx: a total of 32 bytes.

- EFUSE_CTL1: BIT2 locks the ROTPKH from being written again.

 AES KEY

- Optional. If firmware encryption is selected, it is also necessary to burn the firmware

encryption key and set a Lock bit. After the key is burned, it can be read out to verify

whether it is written correctly, but once the Lock bit is set, the software can no longer

read it.

Note: After flashing, only firmware encrypted with AESK can be executed, and it is

not possible to revert.

- EFUSE_AESKEYx: 16 bytes in total.

- After setting BIT5 AESEN to 1 in EFUSE_USERCTL, the software is unable to read

or write the AESKey.

During the development phase, GD32AllInOneProgrammer.exe can be used to program

the EFUSE bits. In the mass production phase, MassProductionTool_CMD.exe can be used

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

10

to perform programming via command line.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

11

3. Firmware package creation

3.1. Firmware package format

There are generally two types of firmware packages, one is the factory package, and the

other is the upgrade package.

3.1.1. Factory package

The factory package refers to the firmware package burned into FLASH during the mass

production of modules. The contents of the factory package are shown in Figure 3-1.

The System Setting area stores system configuration, which is automatically generated

during the compilation of MBL. The MBL area contains the MBL firmware as well as signatures

and certificates, with certificates being optional. The System Status area is padded with 0xFF

to fill empty spaces. These three areas are automatically generated by the script

mbl_afterbuild.bat during the compilation of MBL and are merged into mbl-sys.bin, stored

in %SDK%\scripts\images\.

MSDK 0 stores production test firmware and signatures, etc., namely rftest.bin, which is

compiled from MSDK when CONFIG_RF_TEST_SUPPORT in rftest_cfg.h is enabled, and is

automatically generated in %SDK%\scripts\images\. If Secure Boot is enabled

(RE_MBL_OFFSET = 0x1000), the compilation will automatically add header and footer

information, see 3.2 Firmware encapsulation for details.

MSDK 1 stores the user firmware (msdk.bin). After disable

CONFIG_RF_TEST_SUPPORT and recompiling MSDK, the msdk.bin will be generated and

stored in %SDK%\scripts\images\. Similarly, if Secure Boot is enabled (RE_MBL_OFFSET =

0x1000), the compilation will automatically add header and footer information.

When MBL, MSDK 0 (RFTEST), and MSDK 1 (Normal) are compiled in sequence, an

image-all-mp.bin file is automatically generated in the %SDK%\scripts\images\ directory,

combining the three to serve as the factory mass production firmware.

After factory programming, it defaults to jump to the production testing firmware MSDK 0.

Once the production testing is completed, a serial port command is entered to switch to the

user firmware MSDK 1, and after a simple test, it is ready for shipment.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

12

Figure 3-1 Schematic diagram of the factory firmware package

MSDK 1 (normal)

MSDK 0 (rftest)

Padding with 0xFF

Padding with 0xFF

MBL

Padding with 0xFF

System Setting

4M
bytes

3.1.2. Firmware update package

The upgrade package refers to the image-ota.bin, also known as msdk.bin, that is burned

into the MSDK 0 or MSDK 1 area. After the MSDK compilation, the image_afterbuild.bat is

automatically executed to rename the file and place it in the %SDK%\scripts\images\ directory.

HTTPS protocol is commonly used to download firmware upgrade packages from remote

service areas. An example of an upgrade package is shown in Figure 3-2 using the summary

signature mode.

Figure 3-2 Firmware Upgrade Package

image-ota.bin

HTTP header

Checksum

Packet 1

Packet 2

Packet n

3.2. Firmware encapsulation

After introducing the firmware package, let's take a look at how each sub-firmware is

encapsulated.

3.2.1. Packaging format

Firmware packaging formats are divided into two types based on whether certificate

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

13

authentication is selected: one is called non-certificate firmware packaging, as shown in Figure

3-3; the other is called certificate-enabled firmware packaging, as shown in Figure 3-4.

Firmware encapsulation without a certificate includes: firmware header, firmware itself,

firmware digest, verification signature public key, and firmware digest signature. The data

source for the firmware digest includes the firmware header and the firmware itself. The

ROTPK is used to verify the signature of the firmware digest. In this mode, we only need to

generate a pair of ROT keys, the ROT private key is used to sign the MBL firmware and MSDK

firmware, and the ROTPK is used to verify the signature, as shown in Figure 3-5.

Figure 3-3 Firmware packaging format without certificate

MSDK 0

MSDK 1

MBL

System Status

User Data

System Setting Header

MBL Binary

Digest

ROTPK

Signature

Header

MSDK Binary

Digest

ROTPK

Signature

The firmware encapsulation with a certificate includes: firmware header, firmware itself,

firmware digest, verification certificate public key, certificate, and firmware digest signature.

The data source for the firmware digest includes the firmware header and the firmware itself.

The ROTPK is used to verify the signature of the certificate, while the MBL-PK included in the

certificate is used to verify the signature of the firmware digest. This pattern requires at least

two sets of keys and certificates to be generated, as shown in Figure 3-6.

MSDK can use a separate set of keys and certificates, or share a set with MBL. Currently,

the demonstration uses a shared set, hence the MSDK encapsulation contains ROTPK and

MBL CERT. Otherwise, the MSDK encapsulation would contain MBL-PK and MSDK CERT,

with MSDK-PK included in the MSDK CERT, and the MSDK private key is used to sign the

MSDK digest.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

14

Figure 3-4 Firmware packaging format with certificate

MSDK 0

MSDK 1

MBL

System Status

User Data

System Setting

Header

MBL Binary

Digest

ROTPK

MBL CERT

Header

MSDK Binary

Digest

ROTPK

MBL CERT

Signature

Signature

Firmware encapsulation is completed by the automatically executed scripts

mbl_afterbuild.bat and image_afterbuild.bat after compilation. Users only need to configure

the %SDK%\config\config_gdm32.h, generate the corresponding key pairs and certificates,

and place them in the %SDK%\scripts\certs\ directory. It is best to configure the parameters

passed to the xxx_afterbuild.bat script when called by the IDE, and the corresponding firmware

encapsulation will be automatically generated.

Note: Currently, both ECDSA 256 and ED25519 algorithms are supported for signature

and authentication. If an ECDSA256 key pair and certificate are selected, the IDE needs to

pass the argument "ECDSA256" when calling xxx_afterbuild.bat. For example:

cmd /C “..\..\..\image_afterbuild.bat riscv-nuclei-elf- ECDSA256 CERT

${eclipse_home}/../Tools/OpenOCD/xpack-openocd-0.11.0-3/bin ${ProjDirPath}/../../../../ ” ” ”

If the certificate authentication method is selected, the parameter should be passed as

"CERT"; otherwise, it should be passed as "IMG".

3.2.2. Boot the chain of trust.

The public key of the ROT key pair is referred to as ROTPK, and the public key of the

MBL key pair is referred to MBL-PK.

As shown in Figure 3-5, when secure boot does not require certificate authentication, a

set of ROT keys can be used for signing and verifying signatures. The ROT private key is used

to sign the digests of MBL and MSDK, and the ROTPK is used to verify the signatures.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

15

Figure 3-5 Certificate-less Authentication Trust Chain

MSDK

MBL

EFUSE

ROTPK Hash

ROT key pair

Device environment

Offline process Private KeyPublic Key

Verified with

Verified with

Header

MBL Binary

Digest

ROTPK

Signature

Header

MSDK Binary

Digest

ROTPK

Signature

If secure boot supports certificate authentication, as shown in Figure 3-6. First, a pair of

ROT and MBL keys and two certificates need to be generated. Then, the ROT certificate is

used to sign the MBL-PK certificate, and the MBL private key is used to sign the digests of

MBL and MSDK. The method for generating key pairs can be referred to Section 3.2.3.

During secure boot, the ROM first uses the ROTPK Hash in EFUSE to verify the

legitimacy of the ROTPK carried by the MBL, then uses the ROTPK to verify the legitimacy of

the MBL-PK certificate. If the verification passes, the MBL-PK is extracted from it, and then

the MBL-PK is used to verify the legitimacy of the MBL digest signature. If all verifications pass,

the system jumps to the MBL for execution. After jumping to the MBL, the MBL uses the same

method to verify the legitimacy of the MSDK.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

16

Figure 3-6 Certificate Authentication Trust Chain

MSDK

MBL

EFUSE

ROTPK Hash

ROT key pair

Device environment

Offline process

Private KeyPublic Key

MBL key pair

Private KeyPublic Key

Verified with

Verified with

ROT Cert

Header

MSDK Binary

Digest

ROTPK

MBL CERT

(MBL-PK)

Signature

Header

MBL Binary

Digest

ROTPK

MBL CERT

(MBL-PK)

Signature

3.2.3. Key and certificate generation

Currently, we will use the ROT key pair and MBL key pair, as well as the ROT certificate

and MBL certificate. It is necessary to download and install the OpenSSL Windows tool. Then,

open the Windows CMD window and enter the following commands to generate the required

key pairs and certificates.

ROT key pairs and certificates.

Generate ROT key pair.

>openssl req -key rot-key.pem -new -out rot-req.csr

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

17

Figure 3-7 Generate ROT Key Pair

During the process, a PEM password needs to be set, with "12345678" being the default

in this text. Then, fill in the certificate request information in sequence. Upon success, you will

obtain privkey.pem and rot-req.csr. The privkey.pem is the ROT private key, which is renamed

to rot-key.pem for differentiation. Since the public key can be derived from the private key, only

the private key needs to be saved.

Move privkey.pem to rot-key.pem.

Generate the ROT certificate, which then signs the MBL certificate.

>openssl x509 -req -in rot-req.csr -signkey rot-key.pem -out rot-cert.pem -days 3650

Figure 3-8 Generate ROT Certificate

rot-req.csr is a certificate request; we use the self-signed rot-key.pem to generate rot-

cert.pem. This step requires inputting the PEM password "12345678" that was set above, after

which rot-cert.pem will be generated.

Navigate to the directory %SDK%\scripts\imgtool\, open the Windows CMD, and

execute the following command:

imgtool.py getpub -k ..\certs\ecdsa256\rot-key.pem --hash-algo SHA256 1

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

18

The required ROTPKH to be written into EFUSE can be obtained, as shown in

test_rotpk_hash[] in Figure 3-9.

Figure 3-9 Obtaining ROTPKH

MBL key pairs and certificates

Generate MBL key pair.

>openssl req -newkey ED25519 -new -out mbl-req.csr

Figure 3-10 Generate MBL key pair

Upon successful execution, privkey.pem and mbl-req.csr will be obtained. To distinguish

them, privkey.pem is renamed to mbl-key.pem.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

19

Move privkey.pem to mbl-key.pem.

Generate MBL certificate: > openssl x509 -req -in mbl-req.csr -out mbl-cert.pem -signkey

mbl-key.pem -CA rot-cert.pem -CAkey rot-key.pem -CAcreateserial -days 3650

Figure 3-11 Generate MBL certificate

Upon successful execution, a file named mbl-cert.pem is generated.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

20

4. Firmware upgrade

The SDK released provides an ota_demo.c, which users can refer to when developing

their private OTA code.

For testing the server, it is recommended to use the Python3 HTTP Server. Once Python3

is installed, it can be used directly. The command is as follows, where "HostIP" is the IP of the

host running this command. Note that the device must be on the same local network as the

host.

python -m http.server 80 --bind HostIP

The example code assumes that the user has set up an HTTP server and placed the new

firmware in the server's root directory. Users can input commands through the device's serial

port to perform OTA testing.

ota_demo test_ap password 192.168.3.100 image-ota.bin

"test_ap" and "password" are the SSID and password of the local area network AP to be

connected, "192.168.3.100" is the IP address of the host running the HTTP Server, and

"image-ota.bin" is the upgrade package placed in the root directory of the HTTP Server.

The primary firmware employs a ping-pong buffering strategy for storage. If currently

operating in the MSDK 0 region, the upgrade firmware is burned to the MSDK 1 region.

Conversely, if operating in the MSDK 1 region, the upgrade firmware is burned to the MSDK

0 region. During firmware upgrade, only the checksum or Hash of the firmware downloaded

from the cloud to FLASH is verified to ensure the integrity of the firmware download and the

correctness of the burn to FLASH. The Image Status corresponding to MSDK x is then marked

as NEW and stored in the System Status area.

After the upgrade is completed and a restart is initiated, the MBL will first check the Image

Status of MSDK 0 and MSDK 1. If a NEW label is detected, it will prioritize verification,

specifically validating the firmware signature or certificate of the MSDK. If the verification is

successful, the corresponding Image Status will be marked as VERIFY_OK, and the system

will jump to run the NEW firmware. If the verification fails, the corresponding Image Status will

be marked as VERIFY_FAIL, entering a While(1) loop. Upon restart, the system will select to

verify the other MSDK firmware, which is the old firmware. If the verification is successful, it

will run.

The steps for device upgrade are as follows:

1) The device first determines whether the currently running MSDK is 0 or 1. If it is 0, the

target burn position is 1; otherwise, it is 0.

2) The device establishes a TCP connection with the HTTP server.

3) The device sends an HTTP Request to the server.

4) The server responds with an HTTP response 200 OK, and sends out the MSDK Manifest

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

21

in chunks.

5) After receiving the correct response, the device erases the data at the target programming

location and sequentially writes the sliced content into FLASH.

6) After the server finishes sending the firmware package data, it sends the checksum of

the firmware package.

7) After receiving the checksum, the device reads the FLASH content at the target

programming location to calculate the checksum for comparison.

8) If the verification is successful, the Image Status of the target burn location is marked as

NEW, and the Image Status of the current running location is marked as OLD.

9) reset

10) MBL verifies the signature of the new firmware; if the verification passes, it jumps to run

the new firmware, otherwise, it restarts and returns to running the old firmware.

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

22

5. Revision history

Table 5-1. Revision history

Revision No. Description Date

1.0 Initial release Jul.10.2024

1.1 Modify description Feb.26.2025

1.2 Modify ROTPK Mar.6.2025

1.3 Add OTA details Mar.20.2025

 AN260

GD32VW553 Secure Boot and Firmware Upgrade Guide

23

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This

document, including any product of the Company described in this document (the “Product”), is ow ned by the Company

according to the law s of the People’s Republic of China and other applicable law s. The Company reserves all rights

under such law s and no Intellectual Property Rights are transferred (either w holly or partially) or licensed by the

Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the

property of their respective ow ner and referred to for identif ication purposes only.

To the maximum extent permitted by applicable law , the Company makes no representations or w arranties of any

kind, express or implied, w ith regard to the merchantability and the f itness for a particular purpose of the Product, nor

does the Company assume any liability arising out of the application or use of any Product. Any information provided in

this document is provided only for reference purposes. It is the sole responsibility of the user of this document to

determine w hether the Product is suitable and f it for its applications and products planned, and properly design, program,

and test the functionality and safety of its applications and products planned using the Product. The Product is designed,

developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the

Product is not designed or intended for use in (i) safety critical applications such as w eapons systems, nuclear facilities,

atomic energy controller, combustion controller, aeronautic or aerospace applications, traff ic signal instruments ,

pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems

(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not

limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for

example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,

Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self -

contained motor, engine or the like, such as, w ithout limitation, cars, trucks, motorcycles, electric cars, and other

transportation devices; and/or (iv) other uses w here the failure of the device or the Product can reasonably be expected

to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses") .

Customers shall take any and all actions to ensure the Product meets the applicable law s and regulations. The Company

is not liable for, in w hole or in part, and customers shall hereby release the Company as w ell as its suppliers and/or

distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.

Customers shall indemnify and hold the Company, and its off icers, employees, subsidiaries, aff iliates as w ell as its

suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims

for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection w ith the Product. The Company reserves the right to

make changes, corrections, modif ications or improvements to this document and the Product described herein at any

time w ithout notice. The Company shall have no responsibility w hatsoever for conflicts or incompatibilities arising from

future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2025 GigaDevice Semiconductor Inc. – All rights reserved

	Table of Contents
	Abbreviations
	List of Figures
	List of Tables
	1. Secure Boot
	1.1. Introduction
	1.2. FLASH
	1.3. SRAM
	1.4. Configuration file planning

	2. Hardware configuration
	3. Firmware package creation
	3.1. Firmware package format
	3.1.1. Factory package
	3.1.2. Firmware update package

	3.2. Firmware encapsulation
	3.2.1. Packaging format
	3.2.2. Boot the chain of trust.
	3.2.3. Key and certificate generation
	ROT key pairs and certificates.
	MBL key pairs and certificates

	4. Firmware upgrade
	5. Revision history

