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1. Secure Boot 

1.1. Introduction 

Secure Boot is designed to ensure the authenticity and integrity of all code from the first 

instruction executed by the system to the main application. There are two key points: one is 

the trusted first instruction; the other is to ensure the legality and integrity of the next 

executable program segment when a program segment jump occurs. 

To ensure that the first instruction is always secure, the first executable program segment 

is solidified in ROM, referred to as Immutable Boot Loader (IBL). When the boot mode is 

locked to secure boot, the system will jump to IBL to execute the first instruction upon power-

up or reset, and it cannot be tampered with in any way. Therefore, the first instruction 

possesses root trust. 

The second executable program segment is placed at the beginning of FLASH and is 

referred to as the Main Boot Loader (MBL). The Immutable Boot Loader (IBL) is responsible 

for verifying the legality and integrity of the MBL, it can jump to the MBL only after the 

verification is passed. 

The subsequent executable program segment, referred to as MSDK, will be verified by 

MBL, and can the jump to MSDK only after successful verification. 

The boot process diagram is shown in Figure 1-1. 

Figure 1-1 Boot Process 

IBL MBL MSDK

verification passed verification passed

Run

Secure ROM FLASH FLASH
 

The EFUSE stores the hash value of the Root of Trust Public Key (ROTPK) which verify 

the legality of the public key carried by the first FLASH executable program segment, and then 

verify the digest signature or certificate signature with the verified public key. 

1.2. FLASH  

FLASH map is shown in Figure 1-2. The default configuration of GD32VW553 FLASH 

size is 4M Bytes, and we will take 4M as an example. 

The System Setting primarily stores the initial version information of MBL and MSDK, as 
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well as starting offsets, etc. The initial version information will be read and stored in the 

System Status upon the first startup, and then immediately will be locked. Subsequent 

updates can only advance the version number, not regress.  

The System Status is maintained using a PING/PONG method, with content stored in 

TLV format, including a checksum and encrypted with AES. It is primarily used to store version 

information and the operational status of MSDK 0/1. The version information is used to 

prevent rollback attacks, while the MSDK operational status determines whether the current 

boot is preparing to verify MSDK 0 or MSDK 1. It also stores other boot-related content and 

allows users to add custom storage content. 

The starting position of MSDK 0 is fixed and cannot be modified, but the starting position 

of MSDK 1 can be adjusted based on the size of FLASH and User Data. MSDK 0 and MSDK 

1 will be used for ping-pong upgrades in the future, so it is recommended that the spaces 

reserved for both are roughly the same size. Taking the released SDK as an example, the 

current starting position we have set for MSDK 1 is 0x081EA000. 

Figure 1-2 Flash Map 

MSDK 0

MSDK 1

MBL

System Status
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System Setting0x08000000
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1.3. SRAM 

SRAM map is shown in Figure 1-3. The global variables used by ROM occupy 512 bytes. 

Shared data is the information passed from ROM to MBL, including ROM version 

information, ROTPK hash value, and MBL public key, etc. 
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MBL used refers to the heap and stack utilized by MBL during runtime.  

MSDK used refers to the SRAM space available for MSDK utilization.  

It should be noted that in Figure 1-3, the SRAM used by MSDK overlaps with the Shared 

data area and MBL area because after the execution of MBL, both spaces can be released for 

MSDK use. Therefore, the starting address of the SRAM used by MSDK is also 0x20000200. 

Figure 1-3 SRAM Map 
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1.4. Configuration file planning 

The planning configuration file is located at %SDK%\config\config_gdm32.h, as shown in 

Figure 1-4. This file is divided into four sections: the first section is the base address, the 

second section is the SRAM layout, the third section is the FLASH layout, and the fourth 

section is the firmware version. Users can modify configuration according to the actual needs 

of the project. Lines marked with "Keep unchanged!" should not be modified, as they are 

hardware-bound to the chip. 

During the compilation, linking, and packaging process of various executable programs, 

this file is used. In other words, changes to the layout of SRAM and FLASH only require 

modifications to this single file. 

Attention should be paid to the line RE_MBL_OFFSET. When set to 0, the MBL firmware 

is compiled to boot from FLASH Boot. If Secure ROM Boot is required, this macro needs to 

be modified to 0x1000. 

Figure 1-4 Configuration File 
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2. Hardware configuration 

To enable the secure boot feature, it is necessary to configure specific bits in the EFUSE. 

 Boot mode selection 

- Enable the secure boot startup option. At this time, both BOOT0 and BOOT1 pins 

need to be pulled low, indicating booting from FLASH. A high BOOT0 indicates 

booting from the ROM Bootloader, and both BOOT0 and BOOT1 being high 

indicates booting from SRAM. 

- Secure ROM boot is shared with the FLASH mode through the pin configuration.  

- EFUSE_CTL0: BIT 0 set to 1 indicates booting from Secure ROM, while set to 0 

indicates booting from FLASH. 

- If Secure Boot is enabled, during the factory stage, the BOOT mode can be 

permanently fixed, meaning that the system can only boot from the Secure ROM. 

The following bits can be set for this purpose. 

- EFUSE_CTL0: written as 0x2B 

 Verification option 

- The verification option determines whether the ROM will verify the authenticity of 

the MBL firmware and certificates; if not set, verification will not occur, and secure 

boot is not truly enabled. 

- EFUSE_CTL1: BIT6 represents verification of firmware signature, BIT6 + BIT7 

represents verification of certificate + firmware signature.  

 ROTPKH 

- ROTPKH is used to verify the legality of the ROTPK public key carried by the MBL 

firmware, and the ROTPK public key is used to verify the signature of the MBL digest 

or the certificate signature. The generation method of the ROTPK key pair and 

ROTPKH is referred to in section 3.2.3. 

- EFUSE_ROTPKKEYx: a total of 32 bytes. 

- EFUSE_CTL1: BIT2 locks the ROTPKH from being written again. 

 AES KEY 

- Optional. If firmware encryption is selected, it is also necessary to burn the firmware 

encryption key and set a Lock bit. After the key is burned, it can be read out to verify 

whether it is written correctly, but once the Lock bit is set, the software can no longer 

read it. 

Note: After flashing, only firmware encrypted with AESK can be executed, and it is 

not possible to revert. 

- EFUSE_AESKEYx: 16 bytes in total. 

- After setting BIT5 AESEN to 1 in EFUSE_USERCTL, the software is unable to read 

or write the AESKey. 

 

During the development phase, GD32AllInOneProgrammer.exe can be used to program 

the EFUSE bits. In the mass production phase, MassProductionTool_CMD.exe can be used 
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to perform programming via command line. 
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3. Firmware package creation 

3.1. Firmware package format 

There are generally two types of firmware packages, one is the factory package, and the 

other is the upgrade package. 

3.1.1. Factory package 

The factory package refers to the firmware package burned into FLASH during the mass 

production of modules. The contents of the factory package are shown in Figure 3-1. 

The System Setting area stores system configuration, which is automatically generated 

during the compilation of MBL. The MBL area contains the MBL firmware as well as signatures 

and certificates, with certificates being optional. The System Status area is padded with 0xFF 

to fill empty spaces. These three areas are automatically generated by the script 

mbl_afterbuild.bat during the compilation of MBL and are merged into mbl-sys.bin, stored 

in %SDK%\scripts\images\. 

MSDK 0 stores production test firmware and signatures, etc., namely rftest.bin, which is 

compiled from MSDK when CONFIG_RF_TEST_SUPPORT in rftest_cfg.h is enabled, and is 

automatically generated in %SDK%\scripts\images\. If Secure Boot is enabled 

(RE_MBL_OFFSET = 0x1000), the compilation will automatically add header and footer 

information, see 3.2 Firmware encapsulation for details. 

MSDK 1 stores the user firmware (msdk.bin). After disable 

CONFIG_RF_TEST_SUPPORT and recompiling MSDK, the msdk.bin will be generated and 

stored in %SDK%\scripts\images\. Similarly, if Secure Boot is enabled (RE_MBL_OFFSET = 

0x1000), the compilation will automatically add header and footer information.  

When MBL, MSDK 0 (RFTEST), and MSDK 1 (Normal) are compiled in sequence, an 

image-all-mp.bin file is automatically generated in the %SDK%\scripts\images\ directory, 

combining the three to serve as the factory mass production firmware. 

After factory programming, it defaults to jump to the production testing firmware MSDK 0. 

Once the production testing is completed, a serial port command is entered to switch to the 

user firmware MSDK 1, and after a simple test, it is ready for shipment. 
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Figure 3-1 Schematic diagram of the factory firmware package 
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3.1.2. Firmware update package 

The upgrade package refers to the image-ota.bin, also known as msdk.bin, that is burned 

into the MSDK 0 or MSDK 1 area. After the MSDK compilation, the image_afterbuild.bat is 

automatically executed to rename the file and place it in the %SDK%\scripts\images\ directory. 

HTTPS protocol is commonly used to download firmware upgrade packages from remote 

service areas. An example of an upgrade package is shown in Figure 3-2 using the summary 

signature mode. 

Figure 3-2 Firmware Upgrade Package 
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3.2. Firmware encapsulation 

After introducing the firmware package, let's take a look at how each sub-firmware is 

encapsulated. 

3.2.1. Packaging format 

Firmware packaging formats are divided into two types based on whether certificate 
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authentication is selected: one is called non-certificate firmware packaging, as shown in Figure 

3-3; the other is called certificate-enabled firmware packaging, as shown in Figure 3-4. 

Firmware encapsulation without a certificate includes: firmware header, firmware itself,  

firmware digest, verification signature public key, and firmware digest signature. The data 

source for the firmware digest includes the firmware header and the firmware itself. The 

ROTPK is used to verify the signature of the firmware digest. In this mode, we only need to 

generate a pair of ROT keys, the ROT private key is used to sign the MBL firmware and MSDK 

firmware, and the ROTPK is used to verify the signature, as shown in Figure 3-5. 

Figure 3-3 Firmware packaging format without certificate 
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The firmware encapsulation with a certificate includes: firmware header, firmware itself, 

firmware digest, verification certificate public key, certificate, and firmware digest signature. 

The data source for the firmware digest includes the firmware header and the firmware itself. 

The ROTPK is used to verify the signature of the certificate, while the MBL-PK included in the 

certificate is used to verify the signature of the firmware digest. This pattern requires at least 

two sets of keys and certificates to be generated, as shown in Figure 3-6. 

MSDK can use a separate set of keys and certificates, or share a set with MBL. Currently, 

the demonstration uses a shared set, hence the MSDK encapsulation contains ROTPK and 

MBL CERT. Otherwise, the MSDK encapsulation would contain MBL-PK and MSDK CERT, 

with MSDK-PK included in the MSDK CERT, and the MSDK private key is used to sign the 

MSDK digest. 
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Figure 3-4 Firmware packaging format with certificate 
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Firmware encapsulation is completed by the automatically executed scripts 

mbl_afterbuild.bat and image_afterbuild.bat after compilation. Users only need to configure 

the %SDK%\config\config_gdm32.h, generate the corresponding key pairs and certificates, 

and place them in the %SDK%\scripts\certs\ directory. It is best to configure the parameters 

passed to the xxx_afterbuild.bat script when called by the IDE, and the corresponding firmware 

encapsulation will be automatically generated. 

Note: Currently, both ECDSA 256 and ED25519 algorithms are supported for signature 

and authentication. If an ECDSA256 key pair and certificate are selected, the IDE needs to 

pass the argument "ECDSA256" when calling xxx_afterbuild.bat. For example: 

cmd /C “..\..\..\image_afterbuild.bat riscv-nuclei-elf- ECDSA256 CERT 

${eclipse_home}/../Tools/OpenOCD/xpack-openocd-0.11.0-3/bin ${ProjDirPath}/../../../../ ” ” ” 

If the certificate authentication method is selected, the parameter should be passed as 

"CERT"; otherwise, it should be passed as "IMG". 

3.2.2. Boot the chain of trust. 

The public key of the ROT key pair is referred to as ROTPK, and the public key of the 

MBL key pair is referred to MBL-PK. 

As shown in Figure 3-5, when secure boot does not require certificate authentication, a 

set of ROT keys can be used for signing and verifying signatures. The ROT private key is used 

to sign the digests of MBL and MSDK, and the ROTPK is used to verify the signatures. 
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Figure 3-5 Certificate-less Authentication Trust Chain 
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If secure boot supports certificate authentication, as shown in Figure 3-6. First, a pair of 

ROT and MBL keys and two certificates need to be generated. Then, the ROT certificate is 

used to sign the MBL-PK certificate, and the MBL private key is used to sign the digests of 

MBL and MSDK. The method for generating key pairs can be referred to Section 3.2.3.  

During secure boot, the ROM first uses the ROTPK Hash in EFUSE to verify the 

legitimacy of the ROTPK carried by the MBL, then uses the ROTPK to verify the legitimacy of 

the MBL-PK certificate. If the verification passes, the MBL-PK is extracted from it, and then 

the MBL-PK is used to verify the legitimacy of the MBL digest signature. If all verifications pass, 

the system jumps to the MBL for execution. After jumping to the MBL, the MBL uses the same 

method to verify the legitimacy of the MSDK. 
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Figure 3-6 Certificate Authentication Trust Chain 
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3.2.3. Key and certificate generation 

Currently, we will use the ROT key pair and MBL key pair, as well as the ROT certificate 

and MBL certificate. It is necessary to download and install the OpenSSL Windows tool. Then, 

open the Windows CMD window and enter the following commands to generate the required 

key pairs and certificates. 

ROT key pairs and certificates. 

Generate ROT key pair. 

>openssl req -key rot-key.pem -new -out rot-req.csr 
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Figure 3-7 Generate ROT Key Pair 

 

During the process, a PEM password needs to be set, with "12345678" being the default 

in this text. Then, fill in the certificate request information in sequence. Upon success, you will 

obtain privkey.pem and rot-req.csr. The privkey.pem is the ROT private key, which is renamed 

to rot-key.pem for differentiation. Since the public key can be derived from the private key, only 

the private key needs to be saved. 

Move privkey.pem to rot-key.pem. 

Generate the ROT certificate, which then signs the MBL certificate.  

>openssl x509 -req -in rot-req.csr -signkey rot-key.pem -out rot-cert.pem -days 3650 

Figure 3-8 Generate ROT Certificate 

 

rot-req.csr is a certificate request; we use the self-signed rot-key.pem to generate rot-

cert.pem. This step requires inputting the PEM password "12345678" that was set above, after 

which rot-cert.pem will be generated. 

Navigate to the directory %SDK%\scripts\imgtool\, open the Windows CMD, and 

execute the following command: 

imgtool.py getpub -k ..\certs\ecdsa256\rot-key.pem --hash-algo SHA256 1 
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The required ROTPKH to be written into EFUSE can be obtained, as shown in 

test_rotpk_hash[] in Figure 3-9. 

Figure 3-9 Obtaining ROTPKH 

 

MBL key pairs and certificates 

Generate MBL key pair. 

>openssl req -newkey ED25519 -new -out mbl-req.csr 

Figure 3-10 Generate MBL key pair 

 

Upon successful execution, privkey.pem and mbl-req.csr will be obtained. To distinguish 

them, privkey.pem is renamed to mbl-key.pem. 
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Move privkey.pem to mbl-key.pem. 

Generate MBL certificate: > openssl x509 -req -in mbl-req.csr -out mbl-cert.pem -signkey 

mbl-key.pem -CA rot-cert.pem -CAkey rot-key.pem -CAcreateserial -days 3650 

Figure 3-11 Generate MBL certificate 

 

Upon successful execution, a file named mbl-cert.pem is generated. 
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4. Firmware upgrade 

The SDK released provides an ota_demo.c, which users can refer to when developing 

their private OTA code. 

For testing the server, it is recommended to use the Python3 HTTP Server. Once Python3 

is installed, it can be used directly. The command is as follows, where "HostIP" is the IP of the 

host running this command. Note that the device must be on the same local network as the 

host. 

python -m http.server 80 --bind HostIP 

The example code assumes that the user has set up an HTTP server and placed the new 

firmware in the server's root directory. Users can input commands through the device's serial 

port to perform OTA testing. 

# ota_demo test_ap password 192.168.3.100 image-ota.bin 

"test_ap" and "password" are the SSID and password of the local area network AP to be 

connected, "192.168.3.100" is the IP address of the host running the HTTP Server, and 

"image-ota.bin" is the upgrade package placed in the root directory of the HTTP Server.  

The primary firmware employs a ping-pong buffering strategy for storage. If currently 

operating in the MSDK 0 region, the upgrade firmware is burned to the MSDK 1 region. 

Conversely, if operating in the MSDK 1 region, the upgrade firmware is burned to the MSDK 

0 region. During firmware upgrade, only the checksum or Hash of the firmware downloaded 

from the cloud to FLASH is verified to ensure the integrity of the firmware download and the 

correctness of the burn to FLASH. The Image Status corresponding to MSDK x is then marked 

as NEW and stored in the System Status area. 

After the upgrade is completed and a restart is initiated, the MBL will first check the Image 

Status of MSDK 0 and MSDK 1. If a NEW label is detected, it will prioritize verification, 

specifically validating the firmware signature or certificate of the MSDK. If the verification is 

successful, the corresponding Image Status will be marked as VERIFY_OK, and the system 

will jump to run the NEW firmware. If the verification fails, the corresponding Image Status will 

be marked as VERIFY_FAIL, entering a While(1) loop. Upon restart, the system will select to 

verify the other MSDK firmware, which is the old firmware. If the verification is successful, it 

will run. 

The steps for device upgrade are as follows: 

1) The device first determines whether the currently running MSDK is 0 or 1. If it is 0, the 

target burn position is 1; otherwise, it is 0. 

2) The device establishes a TCP connection with the HTTP server.  

3) The device sends an HTTP Request to the server. 

4) The server responds with an HTTP response 200 OK, and sends out the MSDK Manifest 
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in chunks. 

5) After receiving the correct response, the device erases the data at the target programming 

location and sequentially writes the sliced content into FLASH.  

6) After the server finishes sending the firmware package data, it  sends the checksum of 

the firmware package. 

7) After receiving the checksum, the device reads the FLASH content at the target 

programming location to calculate the checksum for comparison. 

8) If the verification is successful, the Image Status of the target burn location is marked as 

NEW, and the Image Status of the current running location is marked as OLD.  

9) reset 

10) MBL verifies the signature of the new firmware; if the verification passes, it jumps to run 

the new firmware, otherwise, it restarts and returns to running the old firmware. 
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5. Revision history 

Table 5-1. Revision history 

Revision No. Description Date 

1.0 Initial release Jul.10.2024 

1.1 Modify description Feb.26.2025 

1.2 Modify ROTPK Mar.6.2025 

1.3 Add OTA details Mar.20.2025 
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future changes to them. Information in this document supersedes and replaces information previously supplied in any 

prior versions of this document. 
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