GigaDevice Semiconductor Inc.

Arm® Cortex®-M3/4/23/33 32-bit MCU

Application Note
ANO15

©

ANO15
Transplantation of LFS file system based on GD32F450Z

GigaDevice
Table of Contents
Table Of CONEENESoiiiiiiiiii bbb anaaananes 2
LiSt Of FIQUIESooeeiii e e e e e e 3
List Of TabIe ... 4
o INErOdUCHION ... e 5
2. LittleFS transplantation.....................oo s 6
2.1. LittleFS transplanted platform ... 6
2.2. Add the LittleFS SOUICE fil@ oo 6
2.3, IDE CONFIQUIALION ..o 6
2.4, LittleFS parameter CoONfigUIatioN.......coooee i 8
3. LittleFS functional testccoooviiiiiiiii 1"
3.1. LittleFS power failure protection funcCtion teSt..........cooeeviiiiiiie 11
3.2. LittleFS update file data teStcccoeeieeeeeeeeeeeeee e 13
4. ReVISION NISTONY ..o 16

©

GigaDevice

ANO15
Transplantation of LFS file system based on GD32F450Z

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 3-1.
Figure 3-2.

List of Figures

LittleFS version infOrMationoouiiiiiiiii e 6
KEIL4 configures C99 Standardcocueiiiiiiiiieiiiiiie et 7
Compile LittleFS source code for the first timecccooiii i, 7
Macro definition of assert function in LittleFS ..., 7
Add LFS_NO_ASSERT macro definition in KEIL4 ... 8
Modify the assert macro definition in the Ifs_util.h file ..., 8
LittleFS power failure protection funCtion teSt.........cccoviiiiiiiiie i 13
UPAate fil@ dALA TEST.....eii it 15

©

ANO15
Transplantation of LFS file system based on GD32F450Z

GigaDevice
List of Table
Table 2-1. LittleFS configuration ParameterS..........ooiiiiieiiiie et 8
Table 2-2. LittleFS is based on the interface function definition of GD25Q16 SPI-flash.............. 9
Table 3-1. LittIeFS MOUNT COU@uiiiiiiiii ettt e e e e e e 11
Table 3-2. LittleFS power failure protection function test CoOdeccccvviiiiiiiiiiii i 11
Table 3-3. LittleFS update file data COAEcooiiiiiiiiie e 13
Table 4-1. REVISION NISTOTY ...uiiiiiiiiiie et e e et e e st e e e 16

©

GigaDevice

ANO15
Transplantation of LFS file system based on GD32F450Z

1.

Introduction

LittleFS is an open source small file system launched by Arm® for embedded devices. It has
the characteristics of anti-power failure, dynamic wear leveling, and less RAM/ROM
occupation. It is suitable for managing SPI-flash in IOT embedded devices. The specific
introduction can be found at https:/qithub.com/ARMmbed/littlefs.

This article introduces the method of porting LittleFS to GD32 project, and tests the read and
write functions of the file system.

https://github.com/ARMmbed/littlefs

GigaDevice

ANO15
Transplantation of LFS file system based on GD32F450Z

2.

2.1.

2.2.

2.3.

LittleFS transplantation

LittleFS transplanted platform

The LittleF S transplantation platform introduced in this article is the GD32F450Z-EVAL board.
An SPI-flash is attached to the GD32F450Z-EVAL board. The SPI-flash model is GD25Q16.
Porting of LittleFS uses KEIL4, and the code is ported on the SPI_QSPI_Flash project of
GD32F450Z, and the project version is V2.0.0.

The file of LittleFS is very simple, only four files of “Ifs.c”, “Ifs.h”, “Ifs_util.c” and “Ifs_util.h”. The
version of LittleFS transplanted in this article is LFS_VERSION 0x00020002. The version
information of LittleFS can be obtained from the “Ifs.h” file, and the version information is
shown in Figure 2-1. LittleFS version information.

Figure 2-1. LittleFS version information

19 /// Version info ///

21 // Software library version

22 // Major (top-nibble), incremented on backwards incompatible changes
23 // Minor (bottom-nibble), incremented on feature additions

define LFS_VERSION 0x00020002

define LFS_VERSION MAJOR (Uxffff & (LFS_VERSION >> 16)

defink LFS VERSION MINOR (0xffff & (LFS_VERSION >> 0))

EETETS

28 // Version of on-disk data structures

29 // Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions

define LFS_DISK VERSION 0x00020000

define LFS_DISK_VERSION MAJOR (Oxffff & (LFS_DISK_VERSION >> 16))
define LFS_DISK VERSION MINOR (Oxffff & (LFS_DISK VERSION >> 0))

r
S e e

Add the LittleFS source file

The transplantation method introduced in this article is based on the SPI_QSPI_Flash project
of GD32F450Z. First, copy the LittleFS file to the follow folder:

GD32F4xx_Demo_Suites V2.1.0\GD32450Z_EVAL_Demo_Suites\Projects\SPI_QSPI_Flas
h\Soft_Drive.

Then open the project and add two files Ifs.c and Ifs_util.c to the project.

IDE configuration

LittleFS must be configured to support the C99 standard when using KEIL4 to compiler. The
option configuration is shown in Fiqure 2-2. KEIL4 confiqures C99 standard.

c ANO15

GigaDevice Transplantation of LFS file system based on GD32F450Z

Figure 2-2. KEIL4 configures C99 standard

KA Options for Target 'GD32450Z_EVAL' X

Device] Target] Dutput] Listing] User C/C++ lAsm] Linker] Debugz] Utilities]

Preprocessor Symbols

Define: |USE_STDF‘ERIPH_DRIVER.GD 32F450

Undefine: |

Language / Code Generation

[Stict ANSIC Ul
Optimization: IWI I~ Enum Container always int All Wamings <
™ Optimize for Time I~ Plain Charis Signed r
[~ Split Load and Store Muttiple ™ Read-Only Position Independent [~ Mo Auto Includes

¥ One ELF Section per Function I Read-Wite Position Independent [w C39 Mode

Include: |
Paths
Misc |
Controls

MGED32F&oc_Firmware _LibranyGD32F 4 _standard_peripheraltnclude:..

. AGD32Fo_ J

Compiler |-=99 < —cpu Cortex-M4.fp -D__MICROLIB -g -00 —apcs=interwork —split_sections ..\ A . -
control N\GD32Fdex_Firmware_Library"GD32F 4xx_standard_peripheral\nclude .5\ A
string hd

O | Cancel | Defaults | Help

After configuring the C99 standard, compile the project and test whether the LittleFS source
code can be compiled successfuly. The compilation result is shown in Figure 2-3. Compile
LittleFS source code for the first time, showing that the _ aeabi_assert function is
undefined. Because GD32 projects all choose to use micro-library and do not include the

assert function, when KEIL4 opens the optimization level for compilation, compilation errors
are reported.

Figure 2-3. Compile LittleFS source code for the first time

Build target 'GD32450Z_EVAL'

linking...

.\output\GDSZQSOZ_EVAL.axf: Error: Le21BE: Undefined symbol _ aeabi_assert (referred from 1fs.o).
Not enough information to list image symbols.

Finished: 1 information, 0 warning and 1 error messages.

".\oat,p'.:tt.\GDSZ&SOZ_E\’A.T..e.xf" - 1 Error(s), O Warning(s).

Target not created

There is a macro definition about the assert function in the “Ifs_util.h” file, as shown in Figure
2-4. Macro definition of assert function in LittleFS.

Figure 2-4. Macro definition of assert function in LittleFS

g4 | // Runtime assertions
85 H#ifndef LFS_NO_ASSERT
86 | #define LFS ASSERT (test) assert (test)
a7 g
g8

839

Since the assert function is not necessary, the above problems can be solved in two ways.
1. Add macro definition in KEIL4/KEIL5. The adding method is shown in_Figure 2-5. Add
LFS NO ASSERT macro definition in KEIL4.

GigaDevice

ANO15
Transplantation of LFS file system based on GD32F450Z

2.4.

Figure 2-5. Add LFS_NO_ASSERT macro definition in KEIL4

KA Options for Target 'GD32450Z EVAL' X
Device] Targat] Dutput] Listing] User C/C++ lhsm I Lin](er] Debug 1 Utilities]

Preprocessor Symbols

Define: |USE_STD@EF!IPH_DRIVER.GDEZFASEILFS_NO_ASSEF!T I
Undefine: |

Language / Code Generation

[Stict ANSIC U
Optimization: ’m I™ Enum Container always int All Wamings hd
™ Optimize for Time [Plain Charis Signed r
I~ Split Load and Store Muttiple ™ Read-Only Position Independent [T No Auto Includes
I¥ One ELF Section per Function I” Read-Wiite Position Independent ¥ C33 Mode

‘n'gl;';e A NGD32F dex_Firmware_LibranyGD32F 4xx_standard_peripheraltinclude;. ..\ NG D32Fdex_ J
S

Misc |
Controls

Compiler [-£99 ¢ —cpu Cortex-M4fp -0__MICROLIB -g -00 —apcs=interwork —splt_sections -4 4. . -
control [WGD32F4xx_Fimmware _LibranyGD32F4ex_standard_peripheraltinclude -4 5
string v

Modify the macro definition in the Ifs_util.h file and change the macro definition to a no-op.
The modification results are as Figure 2-6. Modify the assert macro definition in the
Ifs _util.h file.

Figure 2-6. Modify the assert macro definition in the Ifs_util.h file
O
84 | // Runtime assertions

B5 H#ifndef LFS_NO ASSERT

B& | //#define LFS ASSERT (test) -assert (test)
87 | #define LFS_ASSERT (test)

88
89 | #d
90 | #endif

After completing the above related operations, and then click compile, the compile
successfully

LittleFS parameter configuration

The configuration parameter structure “struct Ifs_config” of LittleFS is defined in “Ifs.h”. When
LittleFS manages SPI-flash, it is necessary to configure the parameters according to the
actual SPI-flash. The transplantation example of this article uses GD25Q16 SPI-flash. The
related parameter configuration is shown in Table 2-1. LittleFS confiquration parameters.

Table 2-1. LittleFS configuration parameters

[%!
\brief config the block device interface
\param[in] none
\param[out] none
\retval none
*/

GigaDevice

ANO15
Transplantation of LFS file system based on GD32F450Z
void Ifs_config(void)
{
/* block device operations */
g_Ifs_cfg.read = block_device_read; /Nink the block_device_read function
g_Ifs_cfg.prog = block_device_prog; /Nlink the block_device_prog function
g_Ifs_cfg.erase = block_device_erase; /Nink the block_device_sync function
g_Ifs_cfg.sync = block_device_sync; /Nlink the block_device_sync function
/* block device configuration */
g_Ifs_cfg.read_size = 256; /lconfig read data size for each block(256 byte)
g_Ifs_cfg.prog_size = 256; /lconfig write data size for each block(256 byte)
g_lIfs_cfg.block_size = 4096; /lconfig the block size(4096 byte
g_lfs_cfg.cache_size = 256; /IMust be a multiple of the read and program sizes
g_lIfs_cfg.block_count = 1024; [lthe total of block
g_lIfs_cfg.lookahead_size = 128; /IPredictive depth for block allocation:1024/8=128
g_lIfs_cfg.block_cycles = 500; //Set to -1 to disable block-level wear-leveling
}

In the structure Ifs_config, four function pointers are defined: int (*read), int (*prog), int (*erase)
and int (*sync) and the interface function to be called needs to be completed by the user. This
article is based on the interface functions of GD25Q16 SPI-flash as shown in Table 2-2.
LittleFS is based on the interface function definition of GD25Q16 SPI-flash.

Table 2-2. LittleFS is based on the interface function definition of GD25Q16 SPI-flash
[*!

\brief read the data from spi flash block
\param[in] *c : the Ifs_config struct pointer
\param[in] block: the number of block
\param(in] off: the offset in block

\param([in] buffer: the read data buffer

\param(in] size: the size of read data
\param[out] none
\retval none
*
int32_t block_device_read(const struct Ifs_config *c, Ifs_block_t block,
Ifs_off_t off, void *buffer, Ifs_size_t size)

{
[* read the data from spi flash */
spi_flash_buffer_read((uint8_t*) buffer,(block * (c->block_size) + off),size);
return O;

}

[*1

©

GigaDevice

ANO15

Transplantation of LFS file system based on GD32F450Z

\brief write the data from spi flash block
\param[in] *c : the Ifs_config struct pointer
\param[in] block: the number of block
\param(in] off: the offset in block

\paraml[in] buffer: the write data buffer

\param[in] size: the size of write data
\param[out] none
\retval none
*/
int32_t block_device_prog(const struct Ifs_config *c, Ifs_block_t block,
Ifs_off_t off, const void *buffer, Ifs_size_t size)

{
/* write the data to spi flash */
spi_flash_buffer_write((uint8_t*)buffer, ((block) * (c->block_size) + off), size);
return O;

}

Tl
\brief erase the spi flash block
\param[in] *c : the Ifs_config struct pointer
\param[in] block: the number of block
\param[out] none
\retval none

*

int32_t block_device_erase(const struct Ifs_config *c, Ifs_block_t block)

{

[* erase the sector of spi flash */

spi_flash_sector_erase(block * (c->block_size));

return O;
}
¥
\brief Sync the state of the underlying block device.
\param[in] none
\param[out] none
\retval none
*
int32_t block_device_sync(const struct Ifs_config *c)
{
/* no operation */
return O;
}

10

ANO15
Transplantation of LFS file system based on GD32F450Z

GigaDevice
3. LittleFS functional test
This chapter introduces the test of read and write function after porting LittleFS, and gives a
test demo.Before testing the LittleFS function, it is necessary to mount the file system. The
code of mounting LittleFS is as Table 3-1. LittleFS mount code.
Table 3-1. LittleFS mount code
!
\brief mount the filesystem
\param[in] none
\param[out] none
\retval none
*
void sys_lIfs_mount(void)
{
Ifs_config();
[* mount the filesystem */
int err = Ifs_mount(&g_Ifs, &g_Ifs_cfg);
[* reformat if we can't mount the filesystem£-this should only happen on the first boot */
if (err) {
[* format a block device with the littlefs */
Ifs_format(&g_Ifs, &g_Ifs_cfg);
/* mount the filesystem */
Ifs_mount(&g_Ifs, &g_Ifs_cfg);
}
}
3.1. LittleFS power failure protection function test

The power-down protection function is an advantage of LittleFS. The code for the power-
down protection function test refers to Table 3-2. LittleFS power failure protection function

test code.

Table 3-2. LittleFS power failure protection function test code
/*!

\brief

\param[in]

lilltleFS power-off protection test
none

\param[out] none

\retval none

*/

void Ifs_power_off_protection_test(void)

{

uint32_t boot_count = 0;

11

c ANO15

GigaDevice Transplantation of LFS file system based on GD32F450Z

/* open the file */
Ifs_file_open(&g_Ifs, &g_lIfs_file, "boot_count”, LFS_O_RDWR | LFS_O_CREAT);
[* read the data */

Ifs_file_read(&g_Ifs, &g_Ifs_file, &boot_count, sizeof(boot_count));

[* update boot count */

boot_count += 1;

[* write to the beginning of the file */
Ifs_file_rewind(&g_Ifs, &g_Ifs_file);

Ifs_file_write(&g_Ifs, &g_Ifs_file, &boot_count, sizeof(boot_count));

/* remember the storage is not updated until the file is closed successfully */

Ifs_file_close(&g_Ifs, &g_Ifs_file);

/* release any resources */

Ifs_unmount(&g_Ifs);

[* print the boot count */

printf("boot_count:%d\n", boot_count);

}

The file named "boot_count" is updated every time the main function runs. The program can
be interrupted at any time, without losing the record of the number of starts, and without
damaging the file system. How many power-down tests are performed, and the test results
are shown in Figure 3-1. LittleFS power failure protection function test.

12

©

GigaDevice

ANO15
Transplantation of LFS file system based on GD32F450Z

3.2.

Figure 3-1. LittleFS power failure protection function test

Commllact Assiisitant

COM Settings Data receive SAVAGE V423
PortMurn |EDNIE J
BaudR |115200

DFaity |MOME

5 . A\Soft Drivelfs. o:997 error: Corrupted dir pair at {0x0, 0x1}
Datab

boot_count:1
StopB 1

e The Flash_ID:0=C84015
@ Cloze =

boot_count:2

The Flash ID:0xC84015

Recr Options

[Receive to file. ..
[~ Auto linefeed The Flash ID:0xC84015

[~ Zhow timestamp

|~ Receive as hex

boot_count:3

|~ Pause receive

The Flazh ID:0xC34015
Save. .. Claar

. baat_count: 4
Send Options | -

[~ Data from file ...
[Auto checksum
[7 futo clear input

[~ Send as hex 1DCO# ZRxD@ 2T#D@ 40TR# SGMD# GDSR# 7RTSe OCTS# ORi#
[~ Feriod | 1000 ms
Load. .. Clear Send

& Ready! T T R:1431 Reset | 4

As shown in the figure above, when the file system is mounted for the first time, the file system
can not be mounted. At this time, it needs to be reformatted and then mounted.

LittleFS update file data test

The test of updating file data is mainly to write data to the same file multiple times and print
the file content through the serial port. Then use LittleFS's function of cropping file data to
delete unnecessary data. The test demo is as Table 3-3. LittleFS update file data code.

Table 3-3. LittleFS update file data code
[*!

\brief read the data from spi flash block
\param[in] *c : the Ifs_config struct pointer
\param[in] block: the number of block
\param(in] off: the offset in block
\param([in] buffer: the read data buffer
\param(in] size: the size of read data
\param[out] none
\retval none
*
int32_t block_device_read(const struct Ifs_config *c, Ifs_block_t block,
Ifs_off_t off, void *buffer, Ifs_size_t size)

13

©

GigaDevice

ANO15

Transplantation of LFS file system based on GD32F450Z

[* read the data from spi flash */

spi_flash_buffer_read((uint8_t*) buffer,(block * (c->block_size) + off),size);

return O;

}

!
\brief write the data from spi flash block
\param[in] *c : the Ifs_config struct pointer
\param[in] block: the number of block
\param(in] off: the offset in block
\param([in] buffer: the write data buffer
\param[in] size: the size of write data
\param[out] none
\retval none

*

int32_t block_device_prog(const struct Ifs_config *c, Ifs_block_t block,
Ifs_off_t off, const void *buffer, Ifs_size_t size)

{
/* write the data to spi flash */
spi_flash_buffer_write((uint8_t*)buffer, ((block) * (c->block_size) + off), size);
return O;

}

¥
\brief erase the spi flash block
\param([in] *c : the Ifs_config struct pointer
\param[in] block: the number of block
\param[out] none
\retval none

*

int32_t block_device_erase(const struct Ifs_config *c, Ifs_block_t block)
{
[* erase the sector of spi flash */

spi_flash_sector_erase(block * (c->block_size));

return O;

!
\brief Sync the state of the underlying block device.
\param[in] none
\param[out] none

\retval none

14

©

GigaDevice

ANO15
Transplantation of LFS file system based on GD32F450Z

*/
int32_t block_device_sync(const struct Ifs_config *c)
{
/* no operation */
return O;
}

The test result is shown in Figure 3-2. Update file data test. As shown in the figure, the
"E:\\my_test_file" file is created, and the content of the file is updated. The last print result is
the data retained by the file after cutting part of the data.

Figure 3-2. Update file data test

Connlart Assisitant

COM Settings [rata receive SAVAGE V423
Parthurm |EDM8 J
Baudn |115200

The Flash ID:0xC84015

DPaity |MOME - .
Shmy_test_file
Datab & :l Gigallevice MCU for LittleFS Test suecessfully !

StopE 1 E:my_test_file

Gizalevice MCU for LittleFS Test successfully !'Gigalevice MCU for LittleFS

e Fepaat Write Test zuccezzfully !
-{@- Close :
G E:ymy_test_file

Gigalevice MCU for LittleFS Test suecessfully !'Gigalevice MCU
Fecov Options

[T Receive to file. ..
[~ #uto linefeed
[Show timestamp
[~ Receive as hex

|~ Pausze receive

Save. .. Clear

Send Options

[7 Data from file ...
[#uto checksum

[~ #uto clear input

[Send 2= hex 1DCD® 2FRD@ 3T#De 4DTR® SGND# GDSRe 7RTS® ACTS# aRie
[~ Period |1000 ms |
Load. .. Clear Send

& Ready! - T5:0 B4 Resst | /|

15

GigaDevice

ANO15

Transplantation of LFS file system based on GD32F450Z

4.

Revision history

Table 4-1. Revision history

Revision No.

Description

Date

1.0

Initial Release

Dec.13 2021

16

c ANO15

GigaDevice Transplantation of LFS file system based on GD32F450Z

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any
product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and
treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and
treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability
arising out of the application or use of any Product described in this document. Any information provided in this document is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Except for customized products which has been
expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,
industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control
instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,
life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution
control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,
death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling
the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers
shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising
from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers
and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice — All rights reserved

17

	Table of Contents
	List of Figures
	List of Table
	1. Introduction
	2. LittleFS transplantation
	2.1. LittleFS transplanted platform
	2.2. Add the LittleFS source file
	2.3. IDE configuration
	2.4. LittleFS parameter configuration

	3. LittleFS functional test
	3.1. LittleFS power failure protection function test
	3.2. LittleFS update file data test

	4. Revision history

