

GigaDevice Semiconductor Inc.

Arm® Cortex®-M3/4/23/33 32-bit MCU

Application Note

AN015

AN015
Transplantation of LFS file system based on GD32F450Z

2

Table of Contents

Table of Contents ... 2

List of Figures .. 3

List of Table .. 4

1. Introduction .. 5

2. LittleFS transplantation ... 6

2.1. LittleFS transplanted platform .. 6

2.2. Add the LittleFS source file .. 6

2.3. IDE configuration ... 6

2.4. LittleFS parameter configuration .. 8

3. LittleFS functional test .. 11

3.1. LittleFS power failure protection function test .. 11

3.2. LittleFS update file data test ... 13

4. Revision history ... 16

AN015
Transplantation of LFS file system based on GD32F450Z

3

List of Figures

Figure 2-1. LittleFS version information .. 6

Figure 2-2. KEIL4 configures C99 standard .. 7

Figure 2-3. Compile LittleFS source code for the first time .. 7

Figure 2-4. Macro definition of assert function in LittleFS .. 7

Figure 2-5. Add LFS_NO_ASSERT macro definition in KEIL4 .. 8

Figure 2-6. Modify the assert macro definition in the lfs_util.h file .. 8

Figure 3-1. LittleFS power failure protection function test .. 13

Figure 3-2. Update file data test.. 15

AN015
Transplantation of LFS file system based on GD32F450Z

4

List of Table

Table 2-1. LittleFS configuration parameters .. 8

Table 2-2. LittleFS is based on the interface function definition of GD25Q16 SPI-flash 9

Table 3-1. LittleFS mount code .. 11

Table 3-2. LittleFS power failure protection function test code ... 11

Table 3-3. LittleFS update file data code ... 13

Table 4-1. Revision history ... 16

AN015
Transplantation of LFS file system based on GD32F450Z

5

1. Introduction

LittleFS is an open source small file system launched by Arm® for embedded devices. It has

the characteristics of anti-power failure, dynamic wear leveling, and less RAM/ROM

occupation. It is suitable for managing SPI-flash in IOT embedded devices. The specific

introduction can be found at https://github.com/ARMmbed/littlefs.

This article introduces the method of porting LittleFS to GD32 project, and tests the read and

write functions of the file system.

https://github.com/ARMmbed/littlefs

AN015
Transplantation of LFS file system based on GD32F450Z

6

2. LittleFS transplantation

2.1. LittleFS transplanted platform

The LittleFS transplantation platform introduced in this article is the GD32F450Z-EVAL board.

An SPI-flash is attached to the GD32F450Z-EVAL board. The SPI-flash model is GD25Q16.

Porting of LittleFS uses KEIL4, and the code is ported on the SPI_QSPI_Flash project of

GD32F450Z, and the project version is V2.0.0.

The file of LittleFS is very simple, only four files of “lfs.c”, “lfs.h”, “lfs_util.c” and “lfs_util.h”. The

version of LittleFS transplanted in this article is LFS_VERSION 0x00020002. The version

information of LittleFS can be obtained from the “lfs.h” file, and the version information is

shown in Figure 2-1. LittleFS version information.

Figure 2-1. LittleFS version information

2.2. Add the LittleFS source file

The transplantation method introduced in this article is based on the SPI_QSPI_Flash project

of GD32F450Z. First, copy the LittleFS file to the follow folder:

GD32F4xx_Demo_Suites_V2.1.0\GD32450Z_EVAL_Demo_Suites\Projects\SPI_QSPI_Flas

h\Soft_Drive.

Then open the project and add two files lfs.c and lfs_util.c to the project.

2.3. IDE configuration

LittleFS must be configured to support the C99 standard when using KEIL4 to compiler. The

option configuration is shown in Figure 2-2. KEIL4 configures C99 standard.

AN015
Transplantation of LFS file system based on GD32F450Z

7

Figure 2-2. KEIL4 configures C99 standard

After configuring the C99 standard, compile the project and test whether the LittleFS source

code can be compiled successfuly. The compilation result is shown in Figure 2-3. Compile

LittleFS source code for the first time, showing that the __aeabi_assert function is

undefined. Because GD32 projects all choose to use micro-library and do not include the

assert function, when KEIL4 opens the optimization level for compilation, compilation errors

are reported.

Figure 2-3. Compile LittleFS source code for the first time

There is a macro definition about the assert function in the “lfs_util.h” file, as shown in Figure

2-4. Macro definition of assert function in LittleFS.

Figure 2-4. Macro definition of assert function in LittleFS

Since the assert function is not necessary, the above problems can be solved in two ways.

1. Add macro definition in KEIL4/KEIL5. The adding method is shown in Figure 2-5. Add

LFS_NO_ASSERT macro definition in KEIL4.

AN015
Transplantation of LFS file system based on GD32F450Z

8

Figure 2-5. Add LFS_NO_ASSERT macro definition in KEIL4

Modify the macro definition in the lfs_util.h file and change the macro definition to a no-op.

The modification results are as Figure 2-6. Modify the assert macro definition in the

lfs_util.h file.

Figure 2-6. Modify the assert macro definition in the lfs_util.h file

After completing the above related operations, and then click compile, the compile

successfully

2.4. LittleFS parameter configuration

The configuration parameter structure “struct lfs_config” of LittleFS is defined in “lfs.h”. When

LittleFS manages SPI-flash, it is necessary to configure the parameters according to the

actual SPI-flash. The transplantation example of this article uses GD25Q16 SPI-flash. The

related parameter configuration is shown in Table 2-1. LittleFS configuration parameters.

Table 2-1. LittleFS configuration parameters

/*!

 \brief config the block device interface

 \param[in] none

 \param[out] none

 \retval none

*/

AN015
Transplantation of LFS file system based on GD32F450Z

9

void lfs_config(void)

{

 /* block device operations */

 g_lfs_cfg.read = block_device_read; //link the block_device_read function

 g_lfs_cfg.prog = block_device_prog; //link the block_device_prog function

 g_lfs_cfg.erase = block_device_erase; //link the block_device_sync function

 g_lfs_cfg.sync = block_device_sync; //link the block_device_sync function

 /* block device configuration */

 g_lfs_cfg.read_size = 256; //config read data size for each block(256 byte)

 g_lfs_cfg.prog_size = 256; //config write data size for each block(256 byte)

 g_lfs_cfg.block_size = 4096; //config the block size(4096 byte

 g_lfs_cfg.cache_size = 256; //Must be a multiple of the read and program sizes

 g_lfs_cfg.block_count = 1024; //the total of block

 g_lfs_cfg.lookahead_size = 128; //Predictive depth for block allocation:1024/8=128

 g_lfs_cfg.block_cycles = 500; //Set to -1 to disable block-level wear-leveling

}

In the structure lfs_config, four function pointers are defined: int (*read), int (*prog), int (*erase)

and int (*sync) and the interface function to be called needs to be completed by the user. This

article is based on the interface functions of GD25Q16 SPI-flash as shown in Table 2-2.

LittleFS is based on the interface function definition of GD25Q16 SPI-flash.

Table 2-2. LittleFS is based on the interface function definition of GD25Q16 SPI-flash

/*!

 \brief read the data from spi flash block

 \param[in] *c : the lfs_config struct pointer

 \param[in] block: the number of block

 \param[in] off: the offset in block

 \param[in] buffer: the read data buffer

 \param[in] size: the size of read data

 \param[out] none

 \retval none

*/

int32_t block_device_read(const struct lfs_config *c, lfs_block_t block,

 lfs_off_t off, void *buffer, lfs_size_t size)

{

 /* read the data from spi flash */

 spi_flash_buffer_read((uint8_t*) buffer,(block * (c->block_size) + off),size);

 return 0;

}

/*!

AN015
Transplantation of LFS file system based on GD32F450Z

10

 \brief write the data from spi flash block

 \param[in] *c : the lfs_config struct pointer

 \param[in] block: the number of block

 \param[in] off: the offset in block

 \param[in] buffer: the write data buffer

 \param[in] size: the size of write data

 \param[out] none

 \retval none

*/

int32_t block_device_prog(const struct lfs_config *c, lfs_block_t block,

 lfs_off_t off, const void *buffer, lfs_size_t size)

{

 /* write the data to spi flash */

 spi_flash_buffer_write((uint8_t*)buffer, ((block) * (c->block_size) + off), size);

 return 0;

}

/*!

 \brief erase the spi flash block

 \param[in] *c : the lfs_config struct pointer

 \param[in] block: the number of block

 \param[out] none

 \retval none

*/

int32_t block_device_erase(const struct lfs_config *c, lfs_block_t block)

{

 /* erase the sector of spi flash */

 spi_flash_sector_erase(block * (c->block_size));

 return 0;

}

/*!

 \brief Sync the state of the underlying block device.

 \param[in] none

 \param[out] none

 \retval none

*/

int32_t block_device_sync(const struct lfs_config *c)

{

 /* no operation */

 return 0;

}

AN015
Transplantation of LFS file system based on GD32F450Z

11

3. LittleFS functional test

This chapter introduces the test of read and write function after porting LittleFS, and gives a

test demo.Before testing the LittleFS function, it is necessary to mount the file system. The

code of mounting LittleFS is as Table 3-1. LittleFS mount code.

Table 3-1. LittleFS mount code

/*!

 \brief mount the filesystem

 \param[in] none

 \param[out] none

 \retval none

*/

void sys_lfs_mount(void)

{

 lfs_config();

 /* mount the filesystem */

 int err = lfs_mount(&g_lfs, &g_lfs_cfg);

 /* reformat if we can't mount the filesystem£¬this should only happen on the first boot */

 if (err) {

 /* format a block device with the littlefs */

 lfs_format(&g_lfs, &g_lfs_cfg);

 /* mount the filesystem */

 lfs_mount(&g_lfs, &g_lfs_cfg);

 }

}

3.1. LittleFS power failure protection function test

The power-down protection function is an advantage of LittleFS. The code for the power-

down protection function test refers to Table 3-2. LittleFS power failure protection function

test code.

Table 3-2. LittleFS power failure protection function test code

/*!

 \brief lilltleFS power-off protection test

 \param[in] none

 \param[out] none

 \retval none

*/

void lfs_power_off_protection_test(void)

{

 uint32_t boot_count = 0;

AN015
Transplantation of LFS file system based on GD32F450Z

12

 /* open the file */

 lfs_file_open(&g_lfs, &g_lfs_file, "boot_count", LFS_O_RDWR | LFS_O_CREAT);

 /* read the data */

 lfs_file_read(&g_lfs, &g_lfs_file, &boot_count, sizeof(boot_count));

 /* update boot count */

 boot_count += 1;

 /* write to the beginning of the file */

 lfs_file_rewind(&g_lfs, &g_lfs_file);

 lfs_file_write(&g_lfs, &g_lfs_file, &boot_count, sizeof(boot_count));

 /* remember the storage is not updated until the file is closed successfully */

 lfs_file_close(&g_lfs, &g_lfs_file);

 /* release any resources */

 lfs_unmount(&g_lfs);

 /* print the boot count */

 printf("boot_count:%d\n", boot_count);

}

The file named "boot_count" is updated every time the main function runs. The program can

be interrupted at any time, without losing the record of the number of starts, and without

damaging the file system. How many power-down tests are performed, and the test results

are shown in Figure 3-1. LittleFS power failure protection function test.

AN015
Transplantation of LFS file system based on GD32F450Z

13

Figure 3-1. LittleFS power failure protection function test

As shown in the figure above, when the file system is mounted for the first time, the file system

can not be mounted. At this time, it needs to be reformatted and then mounted.

3.2. LittleFS update file data test

The test of updating file data is mainly to write data to the same file multiple times and print

the file content through the serial port. Then use LittleFS's function of cropping file data to

delete unnecessary data. The test demo is as Table 3-3. LittleFS update file data code.

Table 3-3. LittleFS update file data code

/*!

 \brief read the data from spi flash block

 \param[in] *c : the lfs_config struct pointer

 \param[in] block: the number of block

 \param[in] off: the offset in block

 \param[in] buffer: the read data buffer

 \param[in] size: the size of read data

 \param[out] none

 \retval none

*/

int32_t block_device_read(const struct lfs_config *c, lfs_block_t block,

 lfs_off_t off, void *buffer, lfs_size_t size)

{

AN015
Transplantation of LFS file system based on GD32F450Z

14

 /* read the data from spi flash */

 spi_flash_buffer_read((uint8_t*) buffer,(block * (c->block_size) + off),size);

 return 0;

}

/*!

 \brief write the data from spi flash block

 \param[in] *c : the lfs_config struct pointer

 \param[in] block: the number of block

 \param[in] off: the offset in block

 \param[in] buffer: the write data buffer

 \param[in] size: the size of write data

 \param[out] none

 \retval none

*/

int32_t block_device_prog(const struct lfs_config *c, lfs_block_t block,

 lfs_off_t off, const void *buffer, lfs_size_t size)

{

 /* write the data to spi flash */

 spi_flash_buffer_write((uint8_t*)buffer, ((block) * (c->block_size) + off), size);

 return 0;

}

/*!

 \brief erase the spi flash block

 \param[in] *c : the lfs_config struct pointer

 \param[in] block: the number of block

 \param[out] none

 \retval none

*/

int32_t block_device_erase(const struct lfs_config *c, lfs_block_t block)

{

 /* erase the sector of spi flash */

 spi_flash_sector_erase(block * (c->block_size));

 return 0;

}

/*!

 \brief Sync the state of the underlying block device.

 \param[in] none

 \param[out] none

 \retval none

AN015
Transplantation of LFS file system based on GD32F450Z

15

*/

int32_t block_device_sync(const struct lfs_config *c)

{

 /* no operation */

 return 0;

}

The test result is shown in Figure 3-2. Update file data test. As shown in the figure, the

"E:\\my_test_file" file is created, and the content of the file is updated. The last print result is

the data retained by the file after cutting part of the data.

Figure 3-2. Update file data test

AN015
Transplantation of LFS file system based on GD32F450Z

16

4. Revision history

Table 4-1. Revision history

Revision No. Description Date

1.0 Initial Release Dec.13 2021

AN015
Transplantation of LFS file system based on GD32F450Z

17

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Table
	1. Introduction
	2. LittleFS transplantation
	2.1. LittleFS transplanted platform
	2.2. Add the LittleFS source file
	2.3. IDE configuration
	2.4. LittleFS parameter configuration

	3. LittleFS functional test
	3.1. LittleFS power failure protection function test
	3.2. LittleFS update file data test

	4. Revision history

