GigaDevice Semiconductor Inc.

Device limitations of GD32F30x

Errata Sheet
Table of Contents

Table of Contents .. 2
List of Figures .. 3
List of Tables .. 4
1. Introduction ... 5
 1.1. Revision identification ... 5
 1.2. Summary of device limitations ... 5
2. Descriptions of device limitations .. 7
 2.1. PMU ... 7
 2.1.1. Standby mode can not be entered normally ... 7
 2.1.2. Power consumption is higher in deep-sleep mode ... 7
 2.2. RCU ... 7
 2.2.1. MCU can not be waked up after entering deep-sleep / standby mode when DSLP_HOLD / STB_HOLD bit is set ... 7
 2.3. ADC ... 8
 2.3.1. ADC sampling distorts during the calibration ... 8
 2.4. DAC ... 8
 2.4.1. DAC output pin exists electric leakage to VREF+ pin when DAC is disabled 8
 2.5. TIMER ... 8
 2.5.1. Data lost when using timer capture / compare event to trigger DMA transfer and enabling the output compare shadow function ... 8
 2.6. USART ... 9
 2.6.1. Data lost when using USART DMA transmission ... 9
 2.6.2. Mute mode can be waked up as long as the USART_CTL0 register is operated after mute mode is enabled ... 9
 2.7. I2C .. 9
 2.7.1. Read one more data because the BTC flag was not cleared 9
 2.8. EXMC ... 10
 2.8.1. NE timing can not satisfy the requirement when using NAND pre-waiting function 10
3. Revision history ... 11
List of Figures

Figure 1-1. Device revision code of GD32F30x... 5
List of Tables

Table 1-1. Applicable products..5
Table 1-2. Device limitations ... 5
Table 3-1. Revision history..11
1. **Introduction**

This document applies to GD32F30x product series, as shown in Table 1-1. *Applicable products*. It provides the technical details that need to be paid attention to in the process of using GD32 MCU, as well as solutions to related problems.

Table 1-1. Applicable products

<table>
<thead>
<tr>
<th>Type</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCU</td>
<td>GD32F303xx series</td>
</tr>
<tr>
<td></td>
<td>GD32F305xx series</td>
</tr>
<tr>
<td></td>
<td>GD32F307xx series</td>
</tr>
</tbody>
</table>

1.1. **Revision identification**

The device revision can be determined by the mark on the top of the package. The 1st code on the line 3 of the mark represents product revision code. As the picture shown in Figure 1-1. *Device revision code of GD32F30x*.

![Device revision code of GD32F30x](image)

1.2. **Summary of device limitations**

The device limitations of GD32F30x are shown in Table 1-2. *Device limitations*, please refer to section 2 for more details.

Table 1-2. Device limitations

<table>
<thead>
<tr>
<th>Module</th>
<th>Limitations</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>Standby mode can not be entered normally</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Power consumption is higher in deep-sleep mode</td>
<td></td>
</tr>
<tr>
<td>RCU</td>
<td>MCU can not be waked up after entering deep-sleep / standby mode when DSLP_HOLD / STB_HOLD bit is set</td>
<td>Y</td>
</tr>
<tr>
<td>ADC</td>
<td>ADC sampling distorts during the calibration</td>
<td>Y</td>
</tr>
<tr>
<td>DAC</td>
<td>DAC output pin exists electric leakage to VREF+ pin when</td>
<td>Y</td>
</tr>
</tbody>
</table>
Device limitations of GD32F30x

<table>
<thead>
<tr>
<th>Device</th>
<th>Limitation</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC</td>
<td>Disabled</td>
<td>Y</td>
</tr>
<tr>
<td>Timer</td>
<td>Data lost when using timer capture / compare event to trigger DMA transfer and enabling the output compare shadow function</td>
<td>Y</td>
</tr>
<tr>
<td>USART</td>
<td>Data lost when using USART DMA transmission</td>
<td>Y</td>
</tr>
<tr>
<td>Mute mode can be waked up as long as the USART_CTL0 register is operated after mute mode is enabled</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>I2C</td>
<td>Read one more data because the BTC flag was not cleared</td>
<td>Y</td>
</tr>
<tr>
<td>EXMC</td>
<td>NE timing can not satisfy the requirement when using NAND pre-waiting function</td>
<td>Y</td>
</tr>
</tbody>
</table>

Note:
Y = Available
N = Not available
2. Descriptions of device limitations

2.1. PMU

2.1.1. Standby mode can not be entered normally

Description & impact
When system application programme exists other interrupt code (such as systick 1us period interrupt) and needs to enter standby mode through WFI instruction, the system can not enter the standby mode normally.

Workarounds
Application programme needs to mask all interrupts except RTC wakeup source before entering standby mode.

2.1.2. Power consumption is higher in deep-sleep mode

Description & impact
Power consumption is higher in deep-sleep mode.

Workarounds
Application programme can configure I/O (not used, including internal I/O) to analog mode to reduce the power consumption.

2.2. RCU

2.2.1. MCU can not be waked up after entering deep-sleep / standby mode when DSLP_HOLD / STB_HOLD bit is set

Description & impact
When DSLP_HOLD / STB_HOLD bit is set and debug the mcu in deep-sleep / standby mode, the mcu will not be waked up.

Workarounds
The application programme need switch the system clock to IRC8M before entering the deep-sleep / standby mode.
2.3. ADC

2.3.1. ADC sampling distorts during the calibration

Description & impact
When application programme executes the adc calibration function after power up, V_{DDA} voltage generates fluctuation which results in the ADC sampling value distortion.

Workarounds
1) Add 1ms delay after ADC is enabled and before calibrating.
2) Connect a 1uF (better for an extra 10nF) capacitor in parallel with V_{DDA} pin.
3) Select a right bead between V_{DDA} and V_{DD}.

2.4. DAC

2.4.1. DAC output pin exists electric leakage to V_{REF+} pin when DAC is disabled

Description & impact
When DAC is disabled and V_{REF+} is smaller than V_{DD} exceeding 0.7V, DAC output pin exists electric leakage to V_{REF+} pin.

Workarounds
Avoid V_{REF+} is smaller than V_{DD} exceeding 0.7V.

2.5. TIMER

2.5.1. Data lost when using timer capture / compare event to trigger DMA transfer and enabling the output compare shadow function

Description & impact
When using timer capture / compare event to trigger DMA transfer and enabling the output compare shadow function, DMA transfers data 0x00 to TIMERx_CHyCV register which will result in the second data lost after data 0x00.

Workarounds
Do not use data 0x00 in DMA transfer buffer.
2.6. **USART**

2.6.1. **Data lost when using USART DMA transmission**

Description & impact

Application programme configurations follow the such step:
1) Disable USART transmitter.
2) Configure the DMA channel counter.
3) Enable DMA channel.
4) Enable USART transmitter.

When using the above configuration, the transmission data is lost.

Workarounds

Adjust the configurations code sequence as follow:
1) Disable USART transmitter.
2) Configure the DMA channel counter.
3) Enable USART transmitter.
4) Enable DMA channel.

2.6.2. **Mute mode can be waked up as long as the USART_CTL0 register is operated after mute mode is enabled**

Description & impact

After mute mode is enabled, the operation on USART_CTL0 register will wake up USART from mute mode.

Workarounds

When mute mode is enabled and use hardware method to detect idle frame wakeup, operation on USART_CTL0 register is not allowed. When mute mode is enabled and use software method to detect idle frame wakeup, operation on USART_CTL0 register only be allowed when need to exit mute mode.

2.7. **I2C**

2.7.1. **Read one more data because the BTC flag was not cleared**

Description & impact

If an interrupt occurs before reading I2C_DATA register when RBNE flag is set and BTC flag is reset, I2C will read an additional data if BTC flag is set during the interrupt processing
because the read data operation can not clear the BTC flag.

Workarounds

1) Using interrupt method to read the I2C_DATA register.
2) Using DMA method to read the I2C_DATA register.

2.8. EXMC

2.8.1. NE timing can not satisfy the requirement when using NAND pre-waiting function

Description & impact

For some EXMC_NCE-sensitive NAND Flash, NE timing can not satisfy the requirement when using NAND pre-waiting function. NE signal keeps the low level when EXMC_INTx is active.

Workarounds

Using general I/O port to simulate the NE timing to finish the NAND reading and writing, NE signal keeps the low level after starting reading or writing.
3. Revision history

Table 3-1. Revision history

<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>Jun.20 2022</td>
</tr>
</tbody>
</table>

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage (“Unintended Uses”). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.