GigaDevice Semiconductor Inc.

Arm® Cortex®-M3/4/23/33 32-bit MCU

应用笔记
AN033
Table of Contents

Table of Contents ... 2
List of Figures .. 3
List of Tables .. 4
1. Introduction.. 5
2. Development environment construction .. 6
 2.1. Install Ubuntu VM ... 6
 2.2. Install toolchain ... 10
3. Create project.. 12
 3.1. Create project directory ... 12
 3.2. Makefile writing ... 12
 3.3. Compile and test ... 16
4. Revision history.. 18
List of Figures

Figure 2-1. Ubuntu vm installation wizard 1 ... 6
Figure 2-2. Ubuntu vm installation wizard 2 ... 7
Figure 2-3. Ubuntu vm installation wizard 3 ... 7
Figure 2-4. Ubuntu vm installation wizard 4 ... 8
Figure 2-5. Ubuntu vm installation wizard 5 ... 8
Figure 2-6. Ubuntu vm installation wizard 6 ... 9
Figure 2-7. Ubuntu vm installation wizard 7 ... 9
Figure 2-8. Ubuntu vm start done 8 ... 10
Figure 2-9. directory of GCC toolchain .. 10
Figure 2-10. configuration environment variable ... 11
Figure 2-11. make the environment variable effective ... 11
Figure 2-12. toolchain list .. 11
Figure 3-1. project code directory .. 12
Figure 3-2. makefile graphical ... 13
Figure 3-3. compilation flow chart .. 13
Figure 3-4. sub.mak folder ... 15
Figure 3-5. make result .. 16
Figure 3-6. top-level makefile folder ... 16
Figure 3-7. make clean result .. 17
List of Tables

Table 3-1. top-level makefile edit... 13
Table 3-2. Subdirectory sub.mak.. 15
Table 4-1. Revision history ... 18
1. Introduction

We usually use the IDE under windows to develop MCU project. This article describes how to manage a RTOS projects in a Linux environment with multiple Makefiles, develop an LED flashing feature in RTOS task. This scheme can specify modules or files to compile.
2. Development environment construction

The development environment prepare:
- Hardware development board: GD32F303-Test-V1.1
- Compile environment: ubuntu16.04
- Tool chain: gcc-arm-none-eabi, gcc-arm-none-objcopy
- Programming tools: SEGGR J-FlashVV6.50b

2.1. Install Ubuntu VM

VMware workstation download address: https://www.vmware.com/cn/products/workstation-pro/workstation-pro-evaluation.html.

Double-click the installation package and follow the installation wizard, shown in Figure 2-1. Click "next", Select the default settings.

Figure 2-1. Ubuntu vm installation wizard 1
Figure 2.2. Ubuntu vm installation wizard 2

Click "finish", finish install.

Figure 2.3. Ubuntu vm installation wizard 3

Download ubuntu iso file and install. Download address: http://mirrors.aliyun.com/ubuntu-releases/16.04/ After download Ubuntu iso, open VMware, click "file --> create new virtual machine".
Figure 2-4. Ubuntu vm installation wizard 4

Use default settings, click "next".

Figure 2-5. Ubuntu vm installation wizard 5

Select the Ubuntu iso file downloaded earlier, use default settings and click "next".
Click start this virtual machine, the first startup takes a long time, select the default settings until startup is complete.

Figure 2-7. Ubuntu vm installation wizard 7

![Ubuntu vm installation wizard 7](image)

Figure 2-8. Ubuntu vm start done 8 show the page after the Ubuntu VM is started.
2.2. Install toolchain

Use the compiled toolchain, download address: https://launchpad.net/gcc-arm-embedded/+download.

Decompress the downloaded toolchain to the /usr/bin directory of Ubuntu, get a directory gcc-arm-none-eabi-4_9-2015q3/, shown in Figure 2-9. directory of GCC toolchain.

Figure 2-9. directory of GCC toolchain
Configure the Linux system environment variables. Assign GCC toolchain directory in the last of /etc/profile.

Figure 2-10. configuration environment variable

Then input command "source /etc/profile" make the environment variable effective. The Ubuntu VM dose not need to be restarted.

Figure 2-11. make the environment variable effective

After finishing, input command "arm" with the tab key, is successful if the tool chain list is displaye. shown in Figure 2-12. toolchain list here is arm-none-eabi-gcc and arm-none-eabi-objcopy we needed.

Figure 2-12. toolchain list
3. **Create project**

3.1. **Create project directory**

Place the code that needs to be compiled below the path `D:\share\RTX\ubuntu`, shown in *Figure 3-1. project code directory*.

Figure 3-1. project code directory

<table>
<thead>
<tr>
<th>名称</th>
<th>修改日期</th>
<th>类型</th>
<th>大小</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP</td>
<td>2021/8/12 20:50</td>
<td>文件夹</td>
<td></td>
</tr>
<tr>
<td>CMSIS</td>
<td>2021/8/14 14:50</td>
<td>文件夹</td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>2021/8/16 12:43</td>
<td>文件夹</td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>2021/8/12 20:50</td>
<td>文件夹</td>
<td></td>
</tr>
<tr>
<td>SourceGroup</td>
<td>2021/8/16 12:50</td>
<td>文件夹</td>
<td></td>
</tr>
<tr>
<td>Stdlib</td>
<td>2021/8/13 15:34</td>
<td>文件夹</td>
<td></td>
</tr>
<tr>
<td>makefile</td>
<td>2021/8/20 15:52</td>
<td>文件</td>
<td>5 KB</td>
</tr>
</tbody>
</table>

The directory structure is shown below, every directory needed a makefile.

```
├── APP
│   ├── include
│   └── source
├── CMSIS
│   ├── GCC
│   │   ├── include
│   │   └── source
│   └── Core
│       ├── include
│       └── source
├── Device
│   ├── include
│   └── source
└── SourceGroup
    ├── include
    └── source
```

3.2. **Makefile writing**

Use top-level makefile to manager makefile in subdirectories, shown in *Figure 3-2. makefile graphical*.
Figure 3-2. makefile graphical

Makefile

i2c.makefile usart.makefile spi.makefile can.makefile

The compilation processes shown in Figure 3-3. compilation flow chart.

Figure 3-3. compilation flow chart

C source files (.c) → target files (.o) → linker → executable binary (.bin)

Linker

C source files (.c)

Assemble source files (.s) → target files (.o)

Top-level makefile edit an below:

Table 3-1. top-level makefile edit

<table>
<thead>
<tr>
<th>CROSS_COMPILE</th>
<th>arm-none-eabi-</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>$(CROSS_COMPILE)gcc</td>
</tr>
<tr>
<td>OBJCOPY</td>
<td>$(CROSS_COMPILE)objcopy</td>
</tr>
<tr>
<td>TOP</td>
<td>$(shell pwd)</td>
</tr>
</tbody>
</table>
| INC_FLAGS | -I$(TOP)/Device/include \\
| | -I$(TOP)/Core/include \\
| | -I$(TOP)/APP/include \\
| | -I$(TOP)/Stdlib/include \\
| | -I$(TOP)/CMSIS/include |
| CC_FLAGS | -W -Wall -g -mcpu=cortex-m4 -mthumb -D GD32F30X_HD -D USE_STDPERIPH_DRIVER $(INC_FLAGS) -O0 -std=gnu11 |
CC_ASM_FLAGS = -mthumb -mcpu=cortex-m4 -g -Wa,--warn

CC_LD_FLAGS += -mthumb -mcpu=cortex-m4
CC_LD_FLAGS += -Wl,--start-group -lc -lIm -lWl,--end-group -specs=nosys.specs -static -Wl,-cref,-u,Reset_Handler,-Wl,-Map=RTX_Project.map-Wl,--gc-sections-Wl,--
defsym=malloc_getpagesize_P=0x80

LD_PATH = -TDevice/source/gd32f30x_flash.ld

Indicates whether the module participates in compilation
SUPPORT_IIC = yes
SUPPORT_SPI = yes
SUPPORT_CAN = yes
SUPPORT_KEY = no

Specify the source file to compile
include APP/source/sub.mak
include CMSIS/source/sub.mak
include Device/source/sub.mak
include SourceGroup/source/sub.mak

TARGET = RTX_Project

.PHONY: clean all
Replace with .o
C_OBJ = $(C_SRC:%.c=%.o)
ASM_OBJ = $(ASM_SRC:%.s=%.o)

all:$(C_OBJ) $(ASM_OBJ)

$(CC) $(C_OBJ) $(ASM_OBJ) $(LD_PATH) -o $(TARGET).elf $(CC_LD_FLAGS)
$(OBJCOPY) $(TARGET).elf $(TARGET).bin -Obinary

%.o:.c
 $(CC) -c $(CC_FLAGS) -o $@ $<

%.o:.s
 $(CC) -c $(CC_ASM_FLAGS) -o $@ $<

clean:
 rm -rf *.o $(C_OBJ) $(ASM_OBJ) $(TARGET) *.bin *.map *.elf

Create sub.mak file in each source directory of APP, CMSIS, Core, Device, SourceGroup directory, all sub.mak files are written in the same way, just introduce the sub.mak of directory CMSIS/source as below:
Figure 3-4. sub.mak folder

<table>
<thead>
<tr>
<th>名称</th>
<th>修改日期</th>
<th>类型</th>
<th>大小</th>
</tr>
</thead>
<tbody>
<tr>
<td>os_systick.c</td>
<td>2021/8/13 20:42</td>
<td>C文件</td>
<td>4 KB</td>
</tr>
<tr>
<td>RTX_Config.c</td>
<td>2019/3/18 12:00</td>
<td>C文件</td>
<td>2 KB</td>
</tr>
<tr>
<td>rtx_delay.c</td>
<td>2019/3/18 15:50</td>
<td>C文件</td>
<td>3 KB</td>
</tr>
<tr>
<td>rtx_evflags.c</td>
<td>2019/3/18 15:50</td>
<td>C文件</td>
<td>18 KB</td>
</tr>
<tr>
<td>rtx_evrc.c</td>
<td>2019/3/18 15:50</td>
<td>C文件</td>
<td>79 KB</td>
</tr>
<tr>
<td>rtx_kernel.c</td>
<td>2021/8/13 20:44</td>
<td>C文件</td>
<td>20 KB</td>
</tr>
<tr>
<td>rtx_lib.c</td>
<td>2019/3/18 15:50</td>
<td>C文件</td>
<td>26 KB</td>
</tr>
<tr>
<td>rtx_memory.c</td>
<td>2021/8/13 20:46</td>
<td>C文件</td>
<td>7 KB</td>
</tr>
<tr>
<td>rtx_mempool.c</td>
<td>2019/3/18 11:59</td>
<td>C文件</td>
<td>23 KB</td>
</tr>
<tr>
<td>rtx_msgqueue.c</td>
<td>2019/3/18 15:50</td>
<td>C文件</td>
<td>32 KB</td>
</tr>
<tr>
<td>rtx_mutex.c</td>
<td>2019/3/18 15:50</td>
<td>C文件</td>
<td>17 KB</td>
</tr>
<tr>
<td>rtx_semaphore.c</td>
<td>2019/3/18 11:59</td>
<td>C文件</td>
<td>16 KB</td>
</tr>
<tr>
<td>rtx_system.c</td>
<td>2019/3/18 15:50</td>
<td>C文件</td>
<td>6 KB</td>
</tr>
<tr>
<td>rtx_thread.c</td>
<td>2021/8/13 20:47</td>
<td>C文件</td>
<td>58 KB</td>
</tr>
<tr>
<td>rtx_timer.c</td>
<td>2021/8/19 17:46</td>
<td>MAK文件</td>
<td>1 KB</td>
</tr>
</tbody>
</table>

Specifies the file in this directory to compile in sub.mak. Shown as below:

Table 3-2. Subdirectory sub.mak

```make
CMSIS_PATH = CMSIS/source
C_SRC += $(CMSIS_PATH)/os_systick.c \$(CMSIS_PATH)/RTX_Config.c \$(CMSIS_PATH)/rtx_delay.c \$(CMSIS_PATH)/rtx_evflags.c \$(CMSIS_PATH)/rtx_evrc.c \$(CMSIS_PATH)/rtx_kernel.c \$(CMSIS_PATH)/rtx_lib.c \$(CMSIS_PATH)/rtx_memory.c \$(CMSIS_PATH)/rtx_mempool.c \$(CMSIS_PATH)/rtx_msgqueue.c \$(CMSIS_PATH)/rtx_mutex.c \$(CMSIS_PATH)/rtx_semaphore.c \$(CMSIS_PATH)/rtx_system.c \$(CMSIS_PATH)/rtx_thread.c \$(CMSIS_PATH)/rtx_timer.c
ifdef ($(SUPPORT_KEY), yes)
C_SRC += $(AUDIO_PATH)/rtx_keymanager.c
eendif
```
3.3. Compile and test

input command “make” in the directory where the top-level makefile are.

Figure 3-5. make result

The top-level makefile folder will generate .bin file, .elf file and .map file.

Figure 3-6. top-level makefile folder

Input command “make clean” in top-level makefile folder, the .bin file, .elf file and .map file is deleted.
Finally, we can use SEGGR J-Flash download the firmware to mcu for test. The LED is working.
4. Revision history

Table 4-1. Revision history

<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>Aug.26, 2021</td>
</tr>
</tbody>
</table>
Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.